Database Toolbox™ 3
User’s Guide

MATLAB

‘\The MathWorks™

Accelorating the poce of engineering and science



LN

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Database Toolbox™ User’s Guide

© COPYRIGHT 1998-2008 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.


http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

May 1998

July 1998
Online only
December 1999
Online only
June 2001

July 2002
November 2002
June 2004
October 2004
March 2005
September 2005
March 2006
September 2006
October 2006
March 2007
September 2007
March 2008

Online Only
First Printing
June 1999
Second printing
September 2000
Third printing
Online only
Fourth printing
Fifth printing
Online only
Online only
Online only
Online only
Online only
Sixth printing
Online only
Seventh printing
Online only

New for Version 1 for MATLAB® 5.2

For Version 1

Revised for Version 2 (Release 11)

For Version 2 (Release 11)

Revised for Version 2.1 (Release 12)
Revised for Version 2.2 (Release 12.1)
Revised for Version 2.2.1 (Release 13)
Version 2.2.1

Revised for Version 3.0 (Release 14)
Revised for Version 3.1 (Release 14SP1)
Revised for Version 3.0.2 (Release 14SP2)
Revised for Version 3.1 (Release 14SP3)
Revised for Version 3.1.1 (Release 2006a)
Revised for Version 3.2 (Release 2006b)
Revised for Version 3.2 (Release 2006b)
Revised for Version 3.3 (Release 2007a)
Revised for Version 3.4 (Release 2007b)
Revised for Version 3.4.1 (Release 2008a)






Before You Begin

Product Overview ............ ... .0 iiuiiiiennn... 1-2
Working with Databases ............................ 1-3
Connecting to Databases ........................... 1-3
Supported Platforms ................ ... ... .. ... .... 1-3
Supported Databases .............. .. ... 1-3
Supported Drivers ............coiiiiiiiiiiiiiie.. 14
Structured Query Language (SQL) ................... 14
Supported DataTypes ............... ..o, 1-5
Data Retrieval Restrictions ......................... 1-6
Spaces in Table Names or Column Names ............. 1-6
Quotation Marks in Table Names or Column Names ..... 1-6
Reserved Words in Column Names ................... 1-6

Working with Data Sources

2

Setting up ODBC Data Sources ..................... 2-2
Setting up JDBC Data Sources ...................... 2-3
Accessing Existing JDBC Data Sources .............. 2-4
Modifying Existing JDBC Data Sources .............. 2-5

Removing JDBC Data Sources ...................... 2-6




vi

Contents

Troubleshooting JDBC Driver Problems ............. 2-7

Database Toolbox™ Functions vs. Visual Query

3

Builder

When to Use Visual Query Builder .................. 3-2
Tasks You Can Perform Using Visual Query Builder ..... 3-2
Limitations of Visual Query Builder .................. 3-2
When to Use Database Toolbox™ Functions .......... 3-3

Using Visual Query Builder

4 |

Getting Started with Visual Query Builder ........... 4-2
What Is Visual Query Builder? ...................... 4-2
Using Queries to Import Data ....................... 4-2
Using Queries to Export Data ....................... 4-4

Working with Preferences .......................... 4-6
Specifying Preferences ............. ... ... .. ... ..., 4-6
Saving Preferences ........... ... ... 4-9

Displaying Query Results .......................... 4-10
How to Display Query Results ....................... 4-10
Displaying Data Relationally ........................ 4-10
Charting Query Results ............................ 4-14
Displaying Query Results in an HTML Report .......... 4-16
Using the MATLAB® Report Generator™ Software to

Customize Display of Query Results ................ 4-17

Fine-Tuning Queries Using Advanced Query

Options .......... .t i 4-22
Retrieving All Occurrences vs. Unique Occurrences of
Data ... 4-22



Retrieving Data That Meets Specified Criteria .......... 4-24

Grouping Statements .............. ... ... 4-27
Displaying Results in a Specified Order ............... 4-31
Creating Subqueries for Values from Multiple Tables .... 4-34
Creating Queries That Include Results from Multiple

Tables ..ot e e 4-39
Additional Advanced Query Options .................. 4-42

Retrieving BINARY and OTHER Sun™ Java™ Data

Y PES ittt e e 4-43
Importing and Exporting BOOLEAN Data ........... 4-45
Importing BOOLEAN Data from Databases to the
MATLAB® WOrksSpace .. .....overeeneenenenennnn. 4-45
Exporting BOOLEAN Data from the MATLAB® Workspace
toDatabases .......... .. . . . i 4-48
Saving Queriesin M-Files .......................... 4-49
About Generated M-Files ........................... 4-49
VQB Query Elements in M-Files ..................... 4-50

Using Database Toolbox™ Functions

5

Getting Started with Database Toolbox™ Functions .. 5-3

Importing Data from Databases into the MATLAB®
Workspace ........... ...ttt 5-4

Viewing Information About Imported Data .......... 5-10

Exporting Data from the MATLAB® Workspace to a New
RecordinaDatabase ............................ 5-12

Replacing Existing Data in Databases with Data
Exported from the MATLAB® Workspace .......... 5-16

vii



viii

Contents

Exporting Multiple Records from the MATLAB®
Workspace .......... ...ttt 5-18

Retrieving BINARY or OTHER Sun™ Java™ SQL Data

TyPes .. e e e 5-22
Working with Database Metadata ................... 5-24
Accessing Metadata .............. ... . ... 5-24
Resultset Metadata Objects ......................... 5-29
Using Driver Functions ............................ 5-30

About Objects and Methods in the Database Toolbox™
Software .......... .. ... e 5-32

Function Reference

General ......... ... . ... e 6-2
Database Connection .....................cciu.... 6-2
SQL Cursor ........... i e 6-3

Importing Data into the MATLAB® Workspace from a
Database .......... ... ... .. . i, 6-3

Database Metadata Object .......................... 6-4

Exporting Data from the MATLAB® Workspace to a

Database ........... ... i 6-5
Driver Object ......... ... ... ... 6-5
Drivermanager Object ............................. 6-6



Resultset Object ................ ... . i, 6-6
Resultset Metadata Object .......................... 6-7

Visual Query Builder .............................. 6-7

Functions — Alphabetical List

7

Examples

Visual Query Builder GUI: Importing Data ........... A-2
Visual Query Builder GUI: Displaying Results ........ A-2
Visual Query Builder GUI: Exporting Data ........... A-2
Using Database Toolbox Functions .................. A-2
Index

ix



X Contents



Before You Begin

Product Overview (p. 1-2)
Working with Databases (p. 1-3)

Supported Data Types (p. 1-5)

Data Retrieval Restrictions (p. 1-6)

Product overview

Supported platforms, databases,
drivers, and SQL commands

Types of data that the Database
Toolbox™ software can import to
and export from the MATLAB®
workspace

Restrictions on data that this toolbox
can retrieve



1 Before You Begin

Product Overview

Database Toolbox™ software is one of an extensive collection of MATLAB®
toolboxes. This toolbox enables you to use MATLAB functions to import and
export data between the MATLAB workspace and relational databases. With
this toolbox, you can bring data from a database into the MATLAB workspace,
use MATLAB’s computational and analytic tools to work with the data, and
then store the results back in the database or in another database.

For example, a financial analyst working on a mutual fund can import a
company’s financial data into the MATLAB workspace, run selected analyses,
and store the results for future tracking. The analyst can then export the
saved results to a database.

The Database Toolbox product includes Visual Query Builder (VQB), an
easy-to-use graphical user interface (GUI) for exchanging data with your
database. You can use VQB instead of or in addition to Database Toolbox
functions.

Note This toolbox is not intended for use as a tool for database
administration. Use your database system application to perform database
administrative tasks, such as creating tables.




Working with Databases

Working with Databases

In this section...

“Connecting to Databases” on page 1-3
“Supported Platforms” on page 1-3
“Supported Databases” on page 1-3
“Supported Drivers” on page 1-4

“Structured Query Language (SQL)” on page 1-4

Connecting to Databases

Before you can use this toolbox to connect to a database, you must set up data
sources. For more information, see “Configuring Your Environment” in the
Database Toolbox™ Getting Started Guide.

Supported Platforms
This toolbox runs on all platforms that the MATLAB® software supports.

For more information, see Database Toolbox system requirements at
http://www.mathworks.com/products/database/requirements.html.

Note This toolbox does not support running MATLAB software sessions with
the -nojvm startup option enabled on UNIX® platforms. (UNIX is a registered
trademark of the Open Group in the United States and other countries.)

Supported Databases

This toolbox supports importing and exporting data from any ODBC- and/or
JDBC-compliant database management system, including:


http://www.mathworks.com/products/database/requirements.html

1 Before You Begin

14

e IBM DB2®

¢ IBM® Informix®

¢ Ingres®

® Microsoft® Access™

® Microsoft® Excel®

® Microsoft® SQL Server™
e MySQL®

¢ Oracle®

® Postgre SQL

® Sybase® SQL Anywhere®
¢ Sybase SQL Server®

If you are upgrading an earlier version of a database, you need not do

anything special for this toolbox. Simply configure the data sources for the
new version of the database application as you did for the original version.

Supported Drivers

This toolbox requires a database driver. Typically, you install a driver when
you install a database. For instructions about how to install a database driver,
consult your database administrator.

On Microsoft® Windows® platforms, the toolbox supports Open Database
Connectivity (ODBC) drivers and Sun™ Java™ Database Connectivity
(JDBC) drivers.

On UNIX platforms, the toolbox supports Java Database Connectivity
(JDBC) drivers. If your database does not ship with JDBC
drivers, download drivers from the Sun JDBC Web Site at
http://industry.java.sun.com/products/jdbc/drivers.

Structured Query Language (SQL)

This toolbox supports American National Standards Institute (ANSI)
standard SQL commands.


http://industry.java.sun.com/products/jdbc/drivers

Supported Data Types

Supported Data Types

You can import the following data types into the MATLAB® workspace and
export them back to your database:

® BOOLEAN

®* CHAR

® DATE

® DECIMAL

®* DOUBLE

® FLOAT

® INTEGER

® LONGCHAR

® NUMERIC

® REAL

® SMALLINT

® TIME

® TIMESTAMP

® TINYINT

® VARCHAR

® NTEXT

You can import data of types not included in this list into the MATLAB

workspace. However, you may need to manipulate such data before you can
process it in MATLAB.



1 Before You Begin

Data Retrieval Restrictions

In this section...

“Spaces in Table Names or Column Names” on page 1-6

“Quotation Marks in Table Names or Column Names” on page 1-6

“Reserved Words in Column Names” on page 1-6

Spaces in Table Names or Column Names

Microsoft® Access™ supports the use of spaces in table and column names,
but most other databases do not. Queries that retrieve data from tables and
fields whose names contain spaces require delimiters around table names and
field names. In Access™, enclose the table names or field names in quotation
marks, for example, "order id". Other databases use different delimiters,
such as brackets, [ ]. In Visual Query Builder, table names and field names
that include spaces appear in quotation marks.

Quotation Marks in Table Names or Column Names

Do not include quotation marks in table names or column names. The
Database Toolbox™ software does not support data retrieval from table and
column names that contain quotation marks.

Reserved Words in Column Names

You cannot use the Database Toolbox software to import or export data in
columns whose names contain database reserved words, such as DATE or
TABLE.



Working with Data Sources

Setting up ODBC Data Sources
(p. 2-2)

Setting up JDBC Data Sources
(p. 2-3)

Accessing Existing JDBC Data
Sources (p. 2-4)

Modifying Existing JDBC Data
Sources (p. 2-5)

Removing JDBC Data Sources
(p. 2-6)

Troubleshooting JDBC Driver
Problems (p. 2-7)

Setting up ODBC data sources for
use with this toolbox

Setting up JDBC data sources for
use with this toolbox

How to access existing JDBC data
sources in future MATLAB® software
sessions

How to modify properties of existing
JDBC data sources

How to remove JDBC data sources
when they are no longer needed

How to address common JDBC
driver issues



2 Working with Data Sources

Setting up ODBC Data Sources

For instructions on setting up ODBC data sources, see “Setting Up Data
Sources for Use with ODBC Drivers” in the Database Toolbox™Getting
Started Guide.

2-2



Setting up JDBC Data Sources

Setting up JDBC Data Sources

For instructions on setting up JDBC data sources, see “Setting Up Data
Sources for Use with JDBC Drivers” in the Database Toolbox™Getting Started
Guide.

2-3



2 Working with Data Sources

Accessing Existing JDBC Data Sources

To access an existing data source from Visual Query Builder in future
MATLAB® software sessions:

1 In Visual Query Builder, select Query > Define JDBC data source.
2 In the Define JDBC data sources dialog box, click Use Existing File.

3 In the Specify Existing JDBC data source MAT-file dialog box, select the
MAT-file that contains the data sources you want to use and click Open.

The data sources in the selected MAT-file appear in the Define JDBC data
sources dialog box.

4 Click OK to close the Define JDBC data sources dialog box. The data
sources now appear in the Visual Query Builder Data source list.

24



Modifying Existing JDBC Data Sources

Modifying Existing JDBC Data Sources

1 Access the existing data source as described in “Accessing Existing JDBC
Data Sources” on page 2-4.

2 Select the data source in the Define JDBC Data Sources dialog box.
3 Modify the data in the Driver and URL fields.
4 Click Add/Update.

5 Click OK to save your changes and close the Define JDBC data sources
dialog box.

2-5



2 Working with Data Sources

Removing JDBC Data Sources

1 Access the existing data source as described in “Accessing Existing JDBC
Data Sources” on page 2-4.

2 Click Remove.

3 Click OK to save your changes and close the Define JDBC data sources
dialog box.

2-6



Troubleshooting JDBC Driver Problems

Troubleshooting JDBC Driver Problems

This section describes how to address common data source access problems,
in which selecting a data source in the Visual Query Builder list produces
an error, or the data source is not in the list as expected. There are several
potential causes for these issues:

¢ The database is unavailable, or there are connectivity problems. Try
reselecting the data source in VQB. If you are still unable to access the data
source, contact your database administrator.

® You ran the clear all command in the MATLAB® Command Window
after you defined a JDBC data source. In this case, redefine the data source
by following the instructions in “Setting Up Data Sources for Use with
JDBC Drivers” in the Database Toolbox™ Getting Started Guide.



2 Working with Data Sources

2-8



Database Toolbox™
Functions vs. Visual

Query Builder

When to Use Visual Query Builder
(p. 3-2)

When to Use Database Toolbox™
Functions (p. 3-3)

Tasks you can perform using Visual
Query Builder

Tasks you can perform using
Database Toolbox™ functions



3 Database Toolbox™ Functions vs. Visual Query Builder

3-2

When to Use Visual Query Builder

In this section...

“Tasks You Can Perform Using Visual Query Builder” on page 3-2

“Limitations of Visual Query Builder” on page 3-2

Tasks You Can Perform Using Visual Query Builder
You can use Visual Query Builder to:

¢ Import data from relational databases into the MATLAB® workspace by
selecting information from lists to build queries.

¢ Display retrieved information in relational tables, reports, and charts.

e Export data from the MATLAB workspace into new records in a database.

¢ Easily build SQL queries and exchange data between databases and the
MATLAB workspace.

¢ View and edit SQL statements for queries generated with VQB.

* Automatically generate a MATLAB M-file that consists of Database
Toolbox™ functions that perform queries you built using VQB.

Limitations of Visual Query Builder
® You cannot use Visual Query Builder to replace existing data in a database
with data from the MATLAB workspace. Use the update function instead.

® You cannot use Visual Query Builder to export binary data. Instead, use
the fastinsert function.



When to Use Database Toolbox™ Functions

When to Use Database Toolbox™ Functions

Database Toolbox™ functions can do everything that Visual Query Builder
can, and more. You can use these functions to:

Replace existing records in databases with data from the MATLAB®
workspace.

Retrieve large data sets or partial data sets in a single fetch command, or
in discrete amounts using multiple fetches.

Dynamically import data into the MATLAB workspace.
Modify SQL queries in MATLAB statements.
Write MATLAB M-files and applications that access databases.

Perform other functions that are not available with Visual Query Builder,
including:

= Exporting binary data or other data types that you can import into the
MATLAB workspace, but cannot export from the MATLAB workspace
using VQB.

= Accessing database metadata.

3-3



3 Database Toolbox™ Functions vs. Visual Query Builder




Using Visual Query Builder

Getting Started with Visual Query
Builder (p. 4-2)

Working with Preferences (p. 4-6)

Displaying Query Results (p. 4-10)

Fine-Tuning Queries Using
Advanced Query Options (p. 4-22)

Retrieving BINARY and OTHER
Sun™ Java™ Data Types (p. 4-43)

Importing and Exporting BOOLEAN
Data (p. 4-45)

Saving Queries in M-Files (p. 4-49)

Basics of using Visual Query Builder

Set preferences for data retrieval
format, NULLs, and errors

View results as relational displays,
in charts, in table reports, and in
customized reports

Retrieve unique occurrences,
retrieve data meeting specified
criteria, order the results, use
subqueries to retrieve values from
multiple tables, and other options.

Retrieve Sun™ Java™ object data,
such as binary images

Import and export BOOLEAN
(MATLAB® logical) data

After creating and running a
query using VQB, automatically
generate an M-file that contains
the equivalent Database Toolbox™
functions for that query



4 Using Visual Query Builder

4-2

Getting Started with Visual Query Builder

In this section...

“What Is Visual Query Builder?” on page 4-2
“Using Queries to Import Data” on page 4-2
“Using Queries to Export Data” on page 4-4

What Is Visual Query Builder?

Visual Query Builder (VQB) is an easy-to-use graphical user interface (GUI)
for exchanging data with your database. You can use VQB to:

Build queries to retrieve data by selecting information from lists instead of
using MATLAB® functions.

Store data retrieved from a database in a MATLAB cell array, structure, or
numeric matrix.

Process the retrieved data using the MATLAB suite of functions.
Display retrieved information in relational tables, reports, and charts.

Export data from the MATLAB workspace into new rows in a database.

Using Queries to Import Data
The following steps summarize how to use VQB to import data.




Getting Started with Visual Query Builder

To start the Visual Query Builder, type querybuilder at the MATLAB prompt.
*Required step

1* Specify Select.  2* Select data 3 Select 4* Select 5* Select
source. catalog tables. fields to
12 View query results in table, and schema. retrieve.

chart, and report formats.

) VisualQuery L&u’llder -0l =|
8 Set preferences - : /
. uery  Display [Hel .Y
for data retrieval. yE P F
Data aperation
i+ Zelect i Inzert |
Data source ~<——/ Takles f Fields f
13 Save, load, - N _| Catalog
and run queries, coess Databas w | [ e | lirventory Takile | [StockMumber -
and generate SatnpleDs ! =l productTakle January
M-files. tBA=E Files . salesi/olume February
dbtoolboxdemo v suppliers March
‘l | L I"HEfE’U“’= j Termperatures j A il ;I

6 Refine query. — advanced guery options

= Al Where. .. I Group by .. I Having... I Qrcer by ... |
(" Distinct == = | = | =
Sl statement

7 View SQL
statement.™ ™ ISELECT ALL StockMumber March FROM salesolutne YWHERE StockMutnber = 400000

MATLAE woarkspace vatiable

9* Assign variable-»lﬁ

for results.
Data
Wiorkspace varishle Size Memary (bytes)
A TxE QEE -
i [
=l
11 Double-click to view query results 10* Run query.

in MATLAB Array Editor.

For a step-by-step example of how to use queries to import data into the

MATLAB workspace from a database, see “Using Queries to Import Database



4 Using Visual Query Builder

Data into the MATLAB Workspace” in the Database Toolbox™ Getting Started
Guide.

Using Queries to Export Data
The following steps summarize how to use VQB to export data.

4-4



Getting Started with Visual Query Builder

To start the Visual Query Builder, type querybuilder at the MATLAB prompt.

*Required step

9 Save, load, and = Query Display |Help

run queries, set
preferences for

exporting NULLSs,

and generate
M-files.

7 View MATLAB

statement. — insed(cunn Jivg_Freight_Cost' {'Calc_Date''Awg_Cost'hexport _data)

6* Specify variable
containing data
to export.

5* Select fields

1* Specify Insert. 2* Selectdata 3 Select 4* Select to which to
source. catalog tables. export data.
and schema.
) Visual Query| Builder -10] x|
-}
Data operation *
" Select {+ Inzert
Data source <—/Cat I / Tahles ’ Fields |
alog
Excel Files & | |Awo_Freight Cost .| |Calc_Date -
= Access Databas Iﬁdefauﬂ: J Categories Ay _Cost _I
SampleDB Schetna Customers
dEiASE Files Employees
Iddefauﬂb d I | j

Advanced query aptions
Al == | CEro By | Hawitg... I arder by... I

£ Distinct | =] =] = | =

— Expu:ur‘t_data

MATLAE catnmand

MATLAE workzpace variable

Data

‘Workspace variahle Size femary (hytes)
export_data 1xz 150 ﬂ

hd

8* Run query.
For a step-by-step example of how to use queries to export data from the
MATLAB workspace to a database, see “Using Queries to Export MATLAB
Workspace Data to a Database” in the Database Toolbox Getting Started
Guide.

4-5



4 Using Visual Query Builder

4-6

Working with Preferences

In this section...

“Specifying Preferences” on page 4-6

“Saving Preferences” on page 4-9

Specifying Preferences

This section describes how to set VQB preferences to specify:

e How NULL data in a database is represented after you import it into the
MATLAB® workspace

e The format of data retrieved from databases

® The method of error notification

1 Click Query > Preferences. The Preferences dialog box appears.



Working with Preferences

_ioix

[=]-General

e MAT-Files
‘Zonfirmation Dialogs
‘Source Conkrol
e-Mulkithreading
[+-Keyboard
E---Funts

----- Colors

----- [4-Link

----- Command Window
----- Command Hiskory
[+]--Editor/Debugger

----- Current Direckary
----- Array Editor
----- ‘waorkspace

----- Time Series Tools
[+]--Figure Copy Template

[+-irtual Reality
Sirnlink,
Simscape

Database Toolbox Preferences

~Mull data handling

Fead MULL strings as:

Write NULL strings as:

Read MULL numbers as:

Wrike MULL numbers as:

InuII

INaN

InuII

INaN

~Return data

Data return Format

I cellarray

Error handling

I stare

(0] 4 I Cancel | Apply | Help |

4-7



4 Using Visual Query Builder

2 Specify the Preferences settings as described in the following table.

Preference | Value Description
Read 0 If you accept the default value for this field, NULL data imported
NULL from databases into the MATLAB workspace appears as NaN.
numbers Setting this field to 0 causes NULL data imported into the
as MATLAB workspace to appear as 0s.
Data numeric Select a data format based on the type of data you are importing,
return memory considerations, and your preferred method of working
format with retrieved data.
Cell arrays and structures support mixed data types, but require
more memory and process more slowly than numeric matrices.
Select numeric if:
® The data you are retrieving is numeric, or
® You need to convert nonnumeric data to the format specified
in the Read NULL numbers as field.
Error report e Set this field to store or empty to direct errors to a dialog box
handling rather than to the MATLAB Command Window.

¢ Set this field to report to display query errors in the MATLAB
Command Window.




Working with Preferences

3 Click OK.
4 Assign the query results to a workspace variable, A.
5 Click Execute to rerun the query.
Information about the retrieved data appears in the Data area.

6 To see the results, enter A in the Command Window.

A =
125970 1400 1100 981
212569 2400 1721 1414
389123 1800 1200 890
400314 3000 2400 1800
400339 4300 0 2600
400345 5000 3500 2800
400455 1200 900 800
400876 3000 2400 1500
400999 3000 1500 1000
888652 0 900 821

NULL values appear as Os instead of NaNs.

For more information about Preferences, see the setdbprefs function
reference page.

Saving Preferences

Preferences apply only to the current MATLAB software session. They are not
saved with queries. Default Preferences apply when you start a new session,
or after you clear all variables (using, for example, the clear all command).
It is a good practice to check Preferences settings before you run queries.



4 Using Visual Query Builder

4-10

Displaying Query Results

In this section...

“How to Display Query Results” on page 4-10

“Displaying Data Relationally” on page 4-10

“Charting Query Results” on page 4-14

“Displaying Query Results in an HTML Report” on page 4-16

“Using the MATLAB® Report Generator™ Software to Customize Display of
Query Results” on page 4-17

How to Display Query Results

To display query results, perform one of the following actions:

® Enter the variable name to which to assign the query results in the
MATLAB® Command Window.

® Double-click the variable in the VQB Data area to view the data in the
Variable Editor.

The examples in this section use the saved query basic.qry. To load and
configure this query:

1 Click Query > Preferences, and set Read NULL numbers as to 0.
2 Click Query > Load.

3 In the Load SQL Statement dialog box, select basic.qry from the File
name field and click Open.

4 In VQB, enter a value for the MATLAB workspace variable, for example,
A, and click Execute.

Displaying Data Relationally
To display the results of basic.qry:

1 Execute basic.qry.




Displaying Query Results

2 Click Display > Data.

The query results appear in a figure window.

<) Figure 1 _[O] %]
File Edit ¥iew Insert Tools Desktop MWindow Help

Ded& k RANE (L 06 00O

StockNumber January February March

=taln]

1200 900

1400 1100

; : a1
BO0 1200 4000
2400 1500 1414
A0 1721

:,_1 300 _ A00

QUL ol [
v o

Click on a text object

This display shows only unique values for each field, so you should not
read each row as a single record. In this example, there are 10 entries for
StockNumber, 8 entries for January and February, and 10 entries for
March. The number of entries in each field corresponds to the number of
unique values in the field.

3 Click a value in the figure window, for example, StockNumber 400876,
to see its associated values.

4-11



4 Using Visual Query Builder

The data associated with the selected value appears in bold font and is
connected with a dotted line. The data shows that sales for item 400876 are
3000 in January, 2400 in February, and 1500 in March.

<} Figure 1 M [=]E3
File Edit “iew Inset Tools Deskiop MWindow Help

Ded& kh RANe (€ 0600

StockNumber January February March

'
i i T

=talu]

1200 H 00 ('—’ 1
1400 1100 U
: : 981
1800 1200
2400 1500

---8000 (1) 1721
4300 D40 (1)

SO0 [al=1aln)
"~ [

1 of 10 items selected (10%)

4 As another example, click 3000 under January. It shows three different
items with sales of 3000 units in January: 400314, 400876, and 400999.

4-12



Displaying Query Results

<} Figure 1 M [=]E3
File Edit “iew Inset Tools Deskiop MWindow Help

Ded& kh RANe (€ 0600

StockNumber January February March

! ! '
bl Vi BO0
'

:
.

vy
821

'
' '
H200 200
1200 800
'

1400 1100

1800 1200

1000 (1)
005 .. 400 4500 (1) Ha14
:4.3-0453 -_”_:;mﬁ (3) 5173_"1 ”',-51500 (1)

| e L ei1s00 (1)
b 4300 2460 2) :

:
:
:
:

2EO0

;
:
:
;
5000 500
:
:
:
!

u=]
=]
=]

F-- -
5
c

3 of 10 items selected (30%:)

4-13



4 Using Visual Query Builder

Charting Query Results

To chart the results of basic.qry:

1 Click Display > Chart.

The Visual Query Builder Charting dialog box appears.

<} Visual Query Builder Charting M=l E3
Chartz = data Y data
bar || | StockMurnber ﬂ
bar3 January January
bar3h February Februarny
harh tarch +| |March -
comet —I —I
comet3 £ data Color data
cantaur
corbaurd StockMumber ﬂ StockMurmber d
contaurf January January
cylinder February Februamy
errorbar ;I I arch j March j
[ &goregate column data
¥ labels T labels Z labels
StockMumber a | | StockMumber | StockMumber -
January January January
Februar Febriary February
March ;I March_ ;I March_ ;I
x 10
[T Show legend n
Legend labels :
StockMumber ﬂ g &I
January |
Februam =
I arch - , , . . |
||:a[E)n_L_ [ I X [ J D|:| 2 4 i1 8 10 Clase

2 Select a type of chart from the Charts list. In this example, choose a pie

chart by specifying pie.

A preview of the pie chart, with each stock item displayed in a different

color, appears at the bottom of the dialog box.

4-14




Displaying Query Results

3 Select the data to display in the chart from the X data, Y data, and Z
data list boxes. In this example, select March from the X data list box to
display a pie chart of March data.

The pie chart preview now shows percentages for March data.

4 To display a legend, which maps colors to the stock numbers, select the
Show legend check box.

The Legend labels field becomes active..
5 Select StockNumber from the Legend labels list box.

A legend appears in the chart preview. Drag and move the legend in the
preview as needed.

J Visual Query Builder Charting =] E3
Chartz ¥ data ' data

errorbar :I StockMumber ﬂ StockMumber ﬂ
feather January January

fill Februarny

fill3 +| |March -
loglog J —I _I
mesh £ data Color data

meshc

mezhz StockMurmber ﬂ StockMurnber d
January January

pie3 February Februamy

plot ;I March j March j
[ &goregate column data

* labels Y labels £ labels

StockMumber | StockMunnber | StockMumber

January January January

Februar February February

March ;I March_ ;I March_

W Show legend

Legend labels

Dizplay
January Hel
Februan cp
M:ﬁ[tﬂ]n_h Ficld bl e oo j Close

L

4-15



4 Using Visual Query Builder

4-16

6 Click Close to close the Charting dialog box.

Displaying Query Results in an HTML Report
To display results for basic.qry in an HTML report, click Display > Report.

The query results appear as a table in a Web browser. Each row represents
a record from the database. In this example, sales for item 400876 are 3000
in January, 2400 in February, and 1500 in March.

# Netscape =] B3
. File Edit Yiew Go Bookmarks Tools Window Help ‘
F

i e Q @ Q Q@ [ ] |©, search | dgc

Table 1. Database Toolbox Default Report

StockNumber January February March

125970 1400 1100 981

212565 2400 1721 1414

389123 1800 1200 3%0 =
400314 2000 2400 1200 7
400339 4300 ] 2600

400345 5000 3500 2800

400455 1200 200 200

400874 3000 2400 1500

400999 2000 1500 1000

BEE65Z 0 800 521

The MaihWorks Ine

@ & B ©f ) | Document Done (0121 secs) | = =)




Displaying Query Results

Note Because some browsers do not start automatically, you may need to
open your Web browser before displaying the query results.

Using the MATLAB® Report Generator™ Software to
Customize Display of Query Results

To use the MATLAB® Report Generator™ software to customize the display
of the results of basic.qry:

1 Click Display > Report Generator.

2 The Report Explorer opens, listing sample report templates
that you can use to create custom reports. Select the template
matlabroot/toolbox/database/vgb/databasetlbx.rpt from the Options
pane in the middle of the Report Explorer window.

4-17



4 Using Visual Query Builder

4-18

HRepurt Explorer - Report - databasetlbs.rpt

File Edit ‘“iew Toolz Help

=0l x|

[[EE IS AR R X

I IName -

El@ Report Generator
B ﬁ Report - databaszetiby.
Bl Eval - %Evaluate
: H Table - ans
E-4§8 Paragraph - < Texl
BB URL link - htt

- Cuztom Componer
Mevs Component

- Formatting -
Chapter/Subgzectic
Image
Lirk,
List v
Faragraph
Table
Text
Title Page

- Handle Graphics -
Aues Loop
Aues Snapshat
Figure Loop
Figure Snapshot
Graphics Object Lt
Handle Graphics L
Handle Graphics M
Handle Graphics F
Handle Graphics F
Handle Graphics 5

- Logical and Flow C

EEEE BEECEEEECEEG BEEEEEBEEBEL BL

For Loop

Logical Else

Logical Elseif
Logical If -

| | 2l | >

-

Report Options

— Repart File Location

H:databazetibx himl

Directany: IF'resent warking directarny :I I

Filenarne: ISame as setup file

:I Iinde:-t

[ If report already exists, increment to prevent overwiting

Wiem...

— Report Format and Stpleshest

File: farmat: [web (HTML) | |Default HTML stylesheet

=
=]

r— Generation Optian

¥ ‘iew report after generation

[~ Auto save before generation

Evaluate thiz string after generation:

Report dezcription;

A report which extracts information from a database field,

4

Fesvert | Help |

3 Open the report template for editing by clicking Open a Report file or

stylesheet.

a In the Outline pane on the left, under Report Generator >

databasetlbx.rpt, select Table.

b In the Properties pane on the right, do the following:




Displaying Query Results

i In Table Content > Workspace Variable Name, enter the name
of the variable to which you assigned the query results in V@B, for
example, 'A'.

ii Under Header/Footer Options, set Number of header rows to 0.
¢ Click Apply.
4 Click File > Report to run the report.

The report appears in a Web browser.

@ Netscape O] =]
.| File Edit “iew Go Bookmarks Tools Window Help
= P

J e Q @ Q @ [~ fieyrya] G Search | Cf:go @
» |

Table 1. Database Toolbox Default Report

125870 1400 1100 981

212569 2400 1721 1414

388123 1800 1200 250

400314 3000 2400 1800 =
400339 4300 0 2600

400345 a000 3500 2800

400455 1200 00 200

400876 3000 2400 1500

4005959 3000 1500 1000

BEBE52 o] 00 821

The MathWorks Inc =
@ & & ©F 3 | Document Done (0.13 secs) | [~ e

5 Field names do not automatically display as column headers in the report.
To display the field names:

4-19



4 Using Visual Query Builder

a Modify the workspace variable A as follows:

A = [{'Stock Number', 'January', 'February',

'March'};A]

b In the MATLAB Report Generator properties pane, change Number of
header rows to 1 and regenerate the report. The report now displays

field names as headings.

Each row represents a record from the database. For example, sales for
item 400876 are 3000 in January, 2400 in February, and 1500 in March.

# Netscape
. File Edit “iew Go Bookmarks Tools ‘Window Help

=10 x|

N e @ @ @ Q [+ | [CuSearch |
3 |

|
=7 iR
9

Table 1. Database Toolbox Default Report

StockNumber January February March

125970 1400 1100 281

212569 2400 1721 1414

389123 1500 1200 390 &
400314 3000 2400 1500 =
400339 4300 0 2600

400345 5000 3500 2800

400455 1200 200 200

400876 3000 2400 1500

4009599 3000 1500 1000

BEBASZ 0 200 821

The MathWaorks Inc

@ & & @ | Document Done (0121 secs) | = 7|

4-20



Displaying Query Results

For more information about the MATLAB Report Generator product, click the
Help button in the Report Explorer or see the MATLAB Report Generator
documentation.

Note Because some browsers are not configured to launch automatically, you
may need to open your Web browser before displaying the report.

4-21



4 Using Visual Query Builder

4-22

Fine-Tuning Queries Using Advanced Query Options

In this section...

“Retrieving All Occurrences vs. Unique Occurrences of Data” on page 4-22
“Retrieving Data That Meets Specified Criteria” on page 4-24

“Grouping Statements” on page 4-27

“Displaying Results in a Specified Order” on page 4-31

“Creating Subqueries for Values from Multiple Tables” on page 4-34
“Creating Queries That Include Results from Multiple Tables” on page 4-39

“Additional Advanced Query Options” on page 4-42

Note For more information about advanced query options, select Help in any
of the dialog boxes for the options.

Retrieving All Occurrences vs. Unique Occurrences
of Data

To use the dbtoolboxdemo data source to demonstrate how to retrieve all
versus distinct occurrences of data:

1 Set the Data return format preference to cellarray.
2 Set Read NULL numbers as to NaN.
3 In Data operation, choose Select.
4 In Data source, select dbtoolboxdemo.
Do not specify Catalog or Schema.
5 In Tables, select SalesVolume.

6 In Fields, select January.



Fine-Tuning Queries Using Advanced Query Options

7 To retrieve all occurrences of January:
a In Advanced query options, select All.
b Assign the query results to the MATLAB workspace variable Al11l.

¢ Click Execute to run the query.

8 To retrieve only unique occurrences of data:
a In Advanced query options, select Distinct.
b Assign the query results to a MATLAB workspace variable Distinct.

¢ Click Execute to run the query.

9 In the MATLAB® Command Window, enter A11, Distinct to display the
query results:

411 =

[1400]
[2400]
[1800]
[3000]
[4300]
[5000]
[1200]
[3000]
[3000]
[ Nal]

Distinct =

[ Nal]
[1200]
[1400]
[1600]
[2400]
[3000]
[4300]
[5000]

4-23



4 Using Visual Query Builder

4-24

The value 3000 appears three times in All, but appears only once in
Distinct.

Retrieving Data That Meets Specified Criteria

Use basic.qry and the Where field in Advanced query options to retrieve
stock numbers greater than 400000 and less than 500000:

1 Load basic.qry.

2 Set the Data return format preference to cellarray.
3 Set Read NULL numbers as to NaN.

4 In Advanced query options, click Where.

The WHERE Clauses dialog box appears.

<} WHERE Clauses _ (O] x|
Fields Condition Operatar
- i+ Felation = j " AND Subqueny... |
\'J—_ar';uary " Between " OR
bv1earrcuhar_IrI Clin ' Mone
Aupril s nwll Hel
tpi _ _ b |
June LI " Like Aol |
Current clauzes
Edit |
j Group I Delete |
Ungraup I Cancel |
d ok |

5 In Fields, select the field whose values you want to restrict, StockNumber.

6 In Condition, specify that StockNumber must be greater than 400000.
a Select Relation.
b In the drop-down list to the right of Relation, select >.
¢ In the field to the right of the drop-down list, enter 400000.

The WHERE Clauses dialog box now looks as follows.



Fine-Tuning Queries Using Advanced Query Options

<} WHERE Clauses =] 3

Fields Condition Operatar
' Relation j 400000  AND Subquery... |
.,J—_ar';ual_l,l " Between " OR
f'«1EEI[[Cu|'1m_Irl Cn ¥ None
Api s Help |
hay .
June = O Like Apply |
Current clauzes
_I Edit |
Group I Delets |
Ungroup I Cancel |
=l 0K, |

d Click Apply.

The clause that you defined, StockNumber > 400000, appears in the
Current clauses area.

<} WHERE Clauses =] 3

Fields Condition Operatar
' Relation j  AND Subgquery... |
.,J—_ar';ual_l,l " Between " OR
f'«1EEI[[Cu|'1m_Irl Cn ¥ None
Api s Help |
hay .
June = O Like Apply |
Current clauzes
Edit |
StockMumnber » 400000 :I
Group I Delets |
Ungroup I Cancel |
=l 0K, |

4-25



4 Using Visual Query Builder

4-26

7 Add the condition that StockNumber must also be less than 500000.
a In Current clauses, select StockNumber > 400000.
b In Current clauses, click Edit or double-click the StockNumber entry.
¢ For Operator, select AND.
d Click Apply.

The Current clauses field now displays:

StockNumber > 400000 AND
In Fields, select StockNumber.

-

In Condition, select Relation.

In the drop-down list to the right of Relation, select <.

T @

In the field to the right of the drop-down list, enter 500000.
Click Apply.

The Current clauses field now displays:

StockNumber > 400000 AND
StockNumber < 500000

8 Click OK.

The WHERE Clauses dialog box closes. The Where field and SQL
statement display the Where Clause you specified.

9 Assign the query results to the MATLAB workspace variable A.

10 Click Execute.



Fine-Tuning Queries Using Advanced Query Options

11 To view the results, enter A in the Command Window:

=

[400314] [3000] [£400] [1800]
[400339] [4300] [ Hal] [2600]
[400345] [5000] [3500] [2600]
[400455] [1200] [ 900] [ 800]
[400576] [3000] [2400] [1500]
[400999] [3000] [1500] [1000]

12 Save this query as basic_where.qry.

Grouping Statements

Use the WHERE Clauses dialog box to group query statements. In this
example, modify basic_where.qry to retrieve data where sales in January,
February, or March exceed 1500 units, if sales in each month exceed 1000
units.

To modify basic_where.qry:

1 Click Where in VQB. The WHERE Clauses dialog box appears.

<) WHERE Clauses | _ O] x|
Fields Condition Operator
—1 % Relation ¢ j " AND Subqueny... |
éar;uaw " Between  OR
f-f1E«EII_ICL;1E"-I’I Cn " None
April s aull Help |
hay .
June LI " Like Lipply |
Current clauzes
Edit |
StockMumnber » 400000 &MD ;I
Stockhumber < 500000 Group | Delee |
Ungroup I Cancel |
= ok |

2 Modify the query to retrieve data if sales in January, February, or March
exceed 1500 units.

4-27



4 Using Visual Query Builder

a In Current clauses, select StockNumber < 500000 and click Edit.

b For Operator, select OR and click Apply.

¢ In Fields, select January. For Relation, select > and enter 1500 in its
field. For Operator, select OR. Click Apply.

d Repeat step c twice, specifying February and March in Fields.

The WHERE Clauses dialog box now looks as follows.

<} WHERE Clauses _ (O] x|

Fieldz Candition Operator

E tockNumber - i+ Felation j " AND Subqueny... |
\'J—_ar';uary " Between " OR

Tt n ' Mone
Aupril s nwll Help |
M ay .
Jure Ll " Like Apply |
Current clauzes

Edit

StockMumber > 400000 AMD ;l —Il
StockMumber < 500000 OR Group | Delate |
Januar > 1500 OR

February > 1500 OR Ungraup I Cancel |
March > 1500 _I

X ] 8 |

3 Group the criteria that require sales in each month to exceed 1500 units.

4-28

a In Current clauses, select the statement January > 1500 OR. Click
Shift+click to select February > 1500 OR and March > 1500 also.

b Click Group.

An opening parenthesis is added before January and a closing
parenthesis is added after March > 1500, indicating that these

statements are evaluated as a group.




Fine-Tuning Queries Using Advanced Query Options

<) WHERE Clauses M=l E3
Fields Condition Operatar
Ty — —1 * Relation 3 j  AND Subgquery... |
" Between " OR
ln ¥ None
[ s nul Hel |
¥ill s.nu elp
Aune o] (i doply |
Current clauzes
Edit |
StockMumnber » 400000 AMD :I

StockMumber < 500000 OR Group I Delete

I
Ungroup I Cancel |
0K

:

4 Modify the query to retrieve data if sales in each month exceed 1000 units.
a Select March > 1500 ) in Current clauses and click Edit.
b Select AND for Operator and click Apply.

¢ Select January in Fields. Select > for Relation and enter 1000 in its
field. Select AND for Operator. Click Apply.

d Repeat step c twice, specifying February and March in Fields.

The WHERE Clauses dialog box now looks as follows.

4-29



4 Using Visual Query Builder

=} WHERE Clauses

M= B3
Fields Condition Operatar
StackMumber ~| * Relation |> j = AND Subqueny... |
Jaruan
Feb[u;; " Between " 0OR
April ln * Mone
[ET]
June Ll P Help |
July -
August Like
Sentember LI Apply
Current clauzes
Edit
StockMumber > 400000 AMD ;l 4||
StockMumber < 500000 OR
[aruary > 1500 OR Group Delete |
February > 1500 OR
March > 1500 ] AND |
Janua > 1000 AND Uiz Lamee)
February > 1000 AMD
arch = 1000 ;l ok |
e Click OK.

The WHERE Clauses dialog box closes. The SQL statement dialog box
displays the modified where clause.

5 Assign the query results to the MATLAB workspace variable AA.

6 Click Execute to run the query.

4-30




Fine-Tuning Queries Using Advanced Query Options

7 To view the results, enter AA in the MATLAB Command Window.

o =

[212569] [2400] [1721] [1414]
[400314] [3000] [2400] [1800]
[400339] [4300] [ Nal] [2600]
[400345] [ 50007 [3500] [2800]
[400455] [1200] [ 900] [ 800]
[400876] [3000] [2400] [1500]
[400999] [3000] [1500] [1000]

Removing Grouping of Statements
To use the WHERE Clauses dialog box to remove grouping criteria from the
previous example:

1 In Current clauses, select (January > 1000 AND.
2 Click Shift+click to select February > 1000 AND and March > 1000) also.
3 Click Ungroup.

The parentheses are removed from the statements, indicating that their
grouping is removed.

Displaying Results in a Specified Order

Use Order by in Advanced query options to specify the order in which
query results display.

This example uses the basic_where.qry query you created in “Retrieving
Data That Meets Specified Criteria” on page 4-24. The results of
basic_where.qgry are sorted so that January is the primary sort field,
February the secondary, and March the last. Results for January and February
appear in ascending order, and results for March appear in descending order.

To specify the order in which results appear in basic_where.qry:

1 Load basic_where.qry.

4-31



4 Using Visual Query Builder

2 Set the Data return format preference to cellarray.

3 Set Read NULL numbers to NaN.

4 In Advanced query options, select Order by.

The Order By Clauses dialog box appears.

J ORDER BY Clauses

Fields

January
February

Sort key number

S

Sort order

% Azcending
" Descending

arch
Al
(LET]

Jure -

IS [=1 E3

x

Help

Apply

Current clauzes

-

[~

Edit
Delete

Cancel

PR

K

5 Enter values for the Sort key number and Sort order fields for the

appropriate Fields.

To specify January as the primary sort field and display results in

ascending order:
a In Fields, select January.
b For Sort key number, enter 1.

¢ For Sort order, select Ascending.

d Click Apply.

The Current clauses area now displays:

January ASC

4-32




Fine-Tuning Queries Using Advanced Query Options

6 To specify February as the second sort field and display results in
ascending order:

a In Fields, select February.
b For Sort key number, enter 2.
¢ For Sort order, select Ascending.

d Click Apply.
The Current clauses area now displays:

January ASC
February ASC

7 To specify March as the third sort field and display results in descending
order:

a In Fields, select March.

b For Sort key number, enter 3.

¢ For Sort order, select Descending.
d Click Apply.

The Current clauses area now displays:

January ASC
February ASC
March DESC

8 Click OK.

The Order By Clauses dialog box closes. The Order by field and the SQL
statement in VQB display the specified Order By clause.

9 Assign the query results to the MATLAB workspace variable B.

10 Click Execute to run the query.

4-33



4 Using Visual Query Builder

11 To view the results, enter B in the MATLAB Command Window. Enter A to
display the unordered query results and compare them to B. Your results
look as follows:

=
[400314] [3000] [2400] [1800]
[400339] [4300] [ Nal] [2600]
[400345] [5000] [3500] [2800]
[400455] [1200] [ 9007 [ 5007
[400876] [3000] [2400] [1500]
[400999] [3000] [1500] [1000]

E =

[400455] [1200] [ 900] [ 800]
[400999] [3000] [1500] [1000]
[400514] [3000] [2400] [1500]
[400876] [3000] [2400] [1500]
[400339] [4300] [ Nal] [2600]
[400345] [5000] [3500] [2800]

For B, results are first sorted by January sales, in ascending order. The
lowest value for January sales, 1200 (for item number 400455), appears
first. The highest value, 5000 (for item number for 400345), appears last.

For items 400999, 400314, and 400876, January sales were 3000.
Therefore, the second sort key, February sales, applies. February sales
appear in ascending order—1500, 2400, and 2400 respectively.

For items 400314 and 400876, February sales were 2400, so the third sort
key, March sales, applies. March sales appear in descending order—1800
and 1500, respectively.

Creating Subqueries for Values from Multiple Tables

Use the Where feature in Advanced query options to create subqueries.
Creating subqueries in this way is referred to as nested SQL.

4-34



Fine-Tuning Queries Using Advanced Query Options

This example uses basic.qry, which you created in “Saving Queries” in the
Database Toolbox™ Getting Started Guide.

The salesVolume table has sales volumes and stock number fields, but no
product description field. The productTable has product description and
stock number fields, but no sales volumes. This example retrieves the stock
number for the product whose description is Building Blocks from the
productTable table. It then gets the sales volume values for that stock
number from the salesVolume table.

1 Load basic.qry.

2 Set the Data return format Preference to cellarray and Read NULL
numbers as to NaN.

3 Click Where in Advanced query options.
The WHERE Clauses dialog box appears.
4 Click Subquery.

The Subquery dialog box appears.

4-35



4 Using Visual Query Builder

4-36

<} Subquery =l E3
Data zource Tables Fields
dbtoolboxdemo inventomT able - ;I
productT able
zalesVolume
|
e =i =
Subguen WHERE clauses
Fieldz Condition Operator
| & Relation = =] " AND
" Between " OR
n % Mone
1z nul
| € Like Apply |
Current subguen WHERE clauses
;I Group I Edit I
LI Ungroup I Delete I
S0OL subguery statement
Cancel I Help QK. I

5 In Tables, select productTable, which includes the association between the
stock number and the product description. The fields in that table appear.

6 In Fields, select stockNumber, the field that is common to this table and
the table from which you are retrieving results.

The statement SELECT stockNumber FROM productTable is created in the

SQL subquery statement.

7 Limit the query to product descriptions that are Building Blocks.

a In Fields in Subquery WHERE clauses, select productDescription.

b For Condition, select Relation.

¢ In the drop-down list to the right of Relation, select =.

d In the field to the right of the drop-down list, enter 'Building Blocks'.



Fine-Tuning Queries Using Advanced Query Options

e Click Apply.

The clause appears in the Current subquery WHERE clauses field
and is added to the SQL subquery statement.

<} Subquery =l E3

Data zource Tables Fields
dbtoolboxdemo inventomT able -
zalesvolume supplierH umber
li itCost
e o i =l
Subguen WHERE clauzes
Figlds Condition Operator
productMumber ;I &' Relation = ﬂ " AND
shockMNumber " Bet C OR
supplierMumber EUNEEN
LritCost In & None
roductD escription
roductDescription ol

=] £ Like Apply |

Current zubqueny ‘WHERE clauzes

productDescription = 'Building Blocks' ;I Group I Edit I

[ Unaroup I Delete I

SOL subquery statement

I SELECT stockMurmber FROM productT able ‘WHERE productD ezcription = ‘Building Blocks'
Cancel I Help I QK

8 Click OK to close the Subquery dialog box.
9 In the WHERE Clauses dialog box, click Apply.

This updates the Current clauses area using the subquery criteria
specified in steps 3 through 8.

4-37



4 Using Visual Query Builder

4-38

<) WHERE Clauses M=l E3
Fields Condition Operatar
—1 * Relation = j  AND Subgquery... |
January " Between " OR
E‘lleab[rcuhary “ln * Mone
Api s Help
(LET]

Aune o] (i Aipply

Current clauzes

StockMumber = [SELECT stockMumber FROM productT able WHERE productl::l

0

Edit

Group I Delets |
= Ungroup I Cancel |
1] | _>|_I oK,

10 In the WHERE Clauses dialog box, click OK.

:

The WHERE Clauses dialog box closes. The SQL statement in the VQB
dialog box updates.

11 Assign the query results to the MATLAB workspace variable C.

12 Click Execute.

13 Type C at the prompt in the MATLAB Command Window to see the results.

[400345] [5000] [3500] [2800]

14 The results are for item 400345, which has the product description
Building Blocks, although that is not evident from the results. Create
and run a query to verify that the product description is Building Blocks:

a For Data source, select dbtoolboxdemo.

b In Tables, select productTable.

¢ In Fields, select stockNumber and productDescription.

d Assign the query results to the MATLAB workspace variable P.

e Click Execute.



Fine-Tuning Queries Using Advanced Query Options

f Type P at the prompt in the MATLAB Command Window to view the

results.

T =
[125970] 'Yictorian Doll!
[2l2563] '"Train Jet'
[3892123] 'Engine Kit!
[400314] '"Painting Set'
[400339] 'Space Cruiser!
[400345] 'Building Elocks'
[400455] '"Tin Soldier!
[400a76] '3ail Boat!'
[4009939] 'alinky!
[8558652] 'Teddy EBear'

The results show that item 400345 has the product description Building
Blocks. In the next section, you create a query that includes product
description in the results.

Note You can include only one subquery in a query using VQB; you can
include multiple subqueries using Database Toolbox functions.

Creating Queries That Include Results from Multiple
Tables

A query whose results include values from multiple tables is said to perform a
Jjoin operation in SQL.

This example retrieves sales volumes by product description. It is like the
one in “Creating Subqueries for Values from Multiple Tables” on page 4-34,
but this example creates a query that returns product description rather
than stock number.

The salesVolume table has sales volume and stock number fields, but

no product description field. The productTable table has product
description and stock number fields, but no sales volume field. To create
a query that retrieves data from both tables and equates the stock number
from productTable with the stock number from salesVolume:

4-39



4 Using Visual Query Builder

2

3

4

7

4-40

Set the Data return format preference to cellarray and the Read
NULL numbers as preference to NaN.

For Data operation, choose Select.

For Data source, select dbtoolboxdemo.

The Catalog, Schema, and Tables for dbtoolboxdemo appear.
Do not specify Catalog or Schema.

In Tables, select the tables from which you want to retrieve data. For this
example, click Ctrl+click and select both productTable and salesVolume.

The fields (columns) in those tables appear in Fields. Field

names appear in the format fieldName.tableName. Therefore,
productTable.stockNumber indicates the stock number in the product
table and salesVolume.StockNumber indicates the stock number in the
sales volume table.

In Fields, click Ctrl+click to select the following fields:
® productTable.productDescription

® salesVolume.dJanuary

® salesVolume.February

® salesVolume.March

In this example, the Where clause equates the productTable.stockNumber
with the salesVolume.StockNumber, so that product description is
associated with sales volumes in the query results.

In Advanced query options, click Where to associate fields from
different tables. The WHERE Clauses dialog box appears.

In the WHERE clauses dialog box:
a In Fields, select productTable.stockNumber.
b For Condition, select Relation.

¢ In the drop-down list to the right of Relation, select =.



Fine-Tuning Queries Using Advanced Query Options

d In the field to the right of the drop-down list, enter
salesVolume.StockNumber.

e Click Apply.

The clause appears in the Current clauses field.

<} WHERE Clauses _ (O] x|
Fields Condition Operatar
roduotT bl productiumbe < | Relation = j " AND M
roductT able. stockMumber " Between " OR
product T able. suppliert unbe -~ =
productT able. unitCost In * Mane
productT able. productD escrip 2 mull Help |
salesVolume. StockMumber ¥ i
< | " Like Aol |
Current clauzes
Edit |
productT able. stackMumber = zalesWolume. StackMumber ;l
Group I Delete |
Ungraup I Cancel |
= ok |

f Click OK to close the WHERE Clauses dialog box. The Where field and
SQL statement in VQB display the Where clause.

8 Assign the query results to the MATLAB workspace variable P1.
9 Click Execute to run the query.

10 Type P1 in the MATLAB Command Window.

P1 =
'Victorian Doll' [1400] [1100] [ 981]
'Train Set' [2400] [1721] [1414]
'Engine Kit' [1800] [1200] [ 890]
'Painting Set' [3000] [2400] [1800]
'Space Cruiser' [4300] [ NaN] [2600]
'Building Blocks' [5000] [3500] [2800]
'Tin Soldier' [1200] [ 900] [ 800]
'Sail Boat' [3000] [2400] [1500]
'Slinky' [3000] [1500] [1000]
'Teddy Bear' [ NaN] [ 900] [ 821]

4-41



4 Using Visual Query Builder

Additional Advanced Query Options

For more information on advanced query options, choose an option and click
Help in its dialog box. For example, click Group by in Advanced query
options, and then click Help in the Group by Clauses dialog box.

4-42



Retrieving BINARY and OTHER Sun™ Java™ Data Types

Retrieving BINARY and OTHER Sun™ Java™ Data Types

This example shows how to retrieve data of types BINARY and OTHER, which
may require manipulation before it can undergo MATLAB® processing. To
retrieve images using the SampleDB data source and a sample file that parses
image data, matlabroot/toolbox/database/vgb/parsebinary.m:

1 For Data Operation, select Select.

2 In Data source, select SampleDB.

3 In Tables, select Employees.

4 In Fields, select EmployeeID and Photo (which contains bitmap images).
5 Select Query > Preferences.

6 In the Data return format field, specify cellarray.

7 As the MATLAB workspace variable, specify A.

8 Click Execute to run the query.

4-43



4 Using Visual Query Builder

9 Type A in the MATLAB Command Window to view the query results.

A =

(1]
[2]
[3]
[4]
[5]
[6]
(71
(8]
[9]

10 Assign the first element in A to the variable photo.

[21626x1
[21626x1
[21722x1
[21626x1
[21626x1
[21626x1
[21626x1
[21626x1
[21626x1

photo = A{1,2};

11 Make sure your current directory is writable.

12 Run the sample program parsebinary, which writes the retrieved data to
a file, strips ODBC header information, and displays photo as a bitmap

image.

int8]
int8]
int8]
int8]
int8]
int8]
int8]
int8]
int8]

cd I:\MATLABFiles\myfiles
parsebinary(photo,

For more information on parsebinary, enter help parsebinary, or view
the parsebinary M-file in the MATLAB Editor/Debugger by entering open
parsebinary in the Command Window.

4-44

"BMP") ;



Importing and Exporting BOOLEAN Data

Importing and Exporting BOOLEAN Data

In this section...

“Importing BOOLEAN Data from Databases to the MATLAB® Workspace”
on page 4-45

“Exporting BOOLEAN Data from the MATLAB® Workspace to Databases”
on page 4-48

Importing BOOLEAN Data from Databases to the
MATLAB® Workspace

BOOLEAN data is imported from databases into the MATLAB® workspace as
data type logical. This data has a value of 0 (false) or 1 (true), and is stored
in a cell array or structure. This example imports data from the Products
table in the Nwind database into the MATLAB workspace.

1 Set Data return format to cellarray.
2 For Data operation, choose Select.
3 In Data source, select SampleDB.
4 In Tables, select Products.
5 In Fields, select ProductName and Discontinued.
6 Assign the query results to the MATLAB workspace variable D.
7 Click Execute to run the query.
VQB retrieves a 77-by-2 array.

8 Enter D in the MATLAB Command Window. 77 records are returned; only
the first five records appear here due to space constraints.

D =
‘Chai’ [0]
'Chang' [0]
'Aniseed Syrup' [0]
[1x28 char] [0]

4-45



4 Using Visual Query Builder

[1x22 char] [1]
9 Compare these results to the data in Microsoft® Access™.

Discontinued field is BOOLEAN, where a check means true or Yes.

=] E3
Category| Cuantity F Unit Pric| Units In Y| Units |Reord| Dis

continued Al

Supplier

1/ Chai Exotic Lig  Bever: 10 boxes : $18.00 39 0 10 Il
2 Chang Exotic Lig  Bever: 24 -120z $15.00 17 40 25 ([
3 Aniseed Syrup Exotic Lig  Condii |12 - 550 n $10.00 13 70 25 ([
4 Chef Anton's Cajur Mew Orlea Condii 48 -6 oz j $22.00 83 0 D (I
5 Chef Anton's Guml Mew Orlea | Condii |36 boxes | §21.35 0 0 0

-
C ] 4] & | o1 |r#| of 77 1] | L'J
\

Design view in Access for the Discontinued field shows it is a Yes/No (BOOLEAN ) data type.

B Products : Table
| Field Mame Data Tvpe Description a

H Discontinued esiMo ‘Yes means item is no longer available. ] _I
-

Field Properties

General I Lookup I The figld description
Format Yesiho iz optional, It helps
Caption wou describe the Field
DeFaulk Yalue —Mo and is also displayed
Validation Fule in the staktus bar
o when vou seleck this
'-.-'ahdgtu:n Text field on a Form,
Required Mo Press F1 for help on
Indexed 1] descriptions.

4-46



Importing and Exporting BOOLEAN Data

10 In the VQB Data area, double-click D to view its contents in the Variable

Editor. The logical value for the first product, Chai, appears as false
instead of 0.

g4 Array Editor- disc_prods
File Edit %iew Graphics Debug Desktop MWindow Help 2 X
1 2 3 4
1 Chai' false i’
2 ‘Chang' false
3 ‘Aniseed Syrup’ false
| 4| 'Chef Anton's Cajun Seasoning' false
5| ‘Chef Anton's Gurmbo Mix' true _|;|
L »
4

11 In the Variable Editor, double-click false. Its logical value, 0, appears
in a separate window.

g4 Array Editor- disc_prods{1,2}
File Edit “iew Graphics Debug Desktop “Window Help # X
1 2 3 4 &

1] 0 -
' =
3

4
5 | []

KT 0
J dizc_prods = IdiSerods{1 2 o= ‘
4

For more information about MATLAB logical data types, see Logical Types
in the MATLAB Programming Fundamentals documentation.

4-47



4 Using Visual Query Builder

Exporting BOOLEAN Data from the MATLAB®
Workspace to Databases

Logical data is exported from the MATLAB workspace to a database as type
BOOLEAN. This example adds two rows of data to the Products table in the
Nwind database.

1 In the MATLAB workspace, create P, the structure you want to export.
P.ProductName{1,1}="'Chocolate Truffles';
P.Discontinued{1,1}=1logical(0);
P.ProductName{2,1}="'Guatemalan Coffee';
P.Discontinued{2,1}=1logical(1);

2 For Data operation, choose Insert.

3 In Data source, select SampleDB.

4 In Tables, select Products.

5 In Fields, select ProductName and Discontinued.

6 Assign results to the MATLAB workspace variable P.

7 Click Execute to run the query.

VQB inserts two new rows into the Products table.

View the table in Microsoft Access to verify that the data was correctly

inserted.

Froduct Froduct Mame Supplier | Category [ Quantity Pe| Unit P| Units| Units 0| Reorde| Discontinued |
| 74 Langlife Tofu Tokyo Trad Produc & kg pkg.  10.00 4 20 5 |
| /5 Rhdnbrau Klosterbier  PlutzerLleb  Bewera (24 -051bch/ 75 125 0 25 |
| 76| Lakkalikddri Karkki Oy Bevera 500 ml 18.00 57 0 20 u
| 77| Original Frankfurter grir Plutzer Leb  Condin 12 boxes  13.00 32 a 15 O
| 78 Chocalate Truffles F0.00 0 0 0 u
| 789 Guatemalan Coffee F0.00 0 0 0 =
*| umber) 50.00 0 0 0 u -
Record: 14| 4 ] 1k e of 79

4-48



Saving Queries in M-Files

Saving Queries in M-Files

In this section...

“About Generated M-Files” on page 4-49
“VQB Query Elements in M-Files” on page 4-50

About Generated M-Files

Select Query > Generate M-File to create an M-file that contains the
equivalent Database Toolbox™ functions required to run an existing query
that was created in VQB. Edit the M-file to include MATLAB® or related
toolbox functions, as needed. To run the query, execute the M-file.

The following is an example of an M-file generated by VQB.

o°

Set preferences with setdbprefs.

s.DataReturnFormat = 'cellarray';
s.ErrorHandling = 'store';
s.NullNumberRead = 'NaN';
s.NullNumberWrite = 'NaN';
s.NullStringRead = 'null’;
s.NullStringWrite = 'null’;
s.JDBCDataSourceFile = '';
s.UseRegistryForSources = 'yes';
s

.TempDirForRegistryOutput = '';
setdbprefs(s)

% Make connection to database. Note that the password has been omitted.

% Using ODBC driver.
conn = database('dbtoolboxdemo','"', 'password')

% Read data from database.

e = exec(conn, 'SELECT ALL StockNumber,January,February FROM salesVolume');

e = fetch(e);
close(e)

% Close database connection.
close(conn)

4-49



4 Using Visual Query Builder

VQB Query Elements in M-Files
The following VQB query elements do not appear in generated M-files.

® Generated M-files do not include MATLAB workspace variables to which
you assigned query results in the VQB query. The M-file assigns the query
results to e; access these results using the variable e.Data. For example,
you can add a statement to the M-file that assigns a variable name to
e.Data as follows:

myVar = e.Data

® For security reasons, generated M-files do not include passwords required
to connect to databases. Instead, the database statement includes the
string 'password' as a placeholder. To run M-files to connect to databases
that require passwords, substitute your password for the string password
in the database statement.

4-50



Using Database Toolbox™
Functions

Getting Started with Database
Toolbox™ Functions (p. 5-3)

Importing Data from Databases into
the MATLAB® Workspace (p. 5-4)

Viewing Information About Imported
Data (p. 5-10)

Exporting Data from the MATLAB®
Workspace to a New Record in a
Database (p. 5-12)

Replacing Existing Data in
Databases with Data Exported from
the MATLAB® Workspace (p. 5-16)

Exporting Multiple Records from the
MATLAB® Workspace (p. 5-18)

Retrieving BINARY or OTHER
Sun™ Java™ SQL Data Types
(p. 5-22)

Working with Database Metadata
(p. 5-24)

Introduction to Database Toolbox™
functions

Import data from the SampleDB data
source and format the retrieved data

View information retrieved from
the SampleDB data source, such as
number of rows and column names

Export a new record from the
MATLAB® workspace and commit it
to the SampleDB data source

Update an existing record in the
SampleDB data source

Import data from the dbtoolboxdemo
data source, and then export multiple
records to a new table

Retrieve BINARY or OTHER Sun™
Java™ SQL data types, such as
bitmap images and MAT-files.

Get information about the
dbtoolboxdemo data source



5 Using Database Toolbox™ Functions

Using Driver Functions (p. 5-30)

About Objects and Methods in
the Database Toolbox™ Software
(p. 5-32)

Create driver objects and set and get
their properties

Use object-oriented methods with
the toolbox



Getting Started with Database Toolbox™ Functions

Getting Started with Database Toolbox™ Functions

The following sections provide examples of how to use Database Toolbox™
functions. M-files that include functions used in some of these examples are
available in matlab/toolbox/database/dbdemos.

Follow these simple examples consecutively when you first start using the
product. Once you are familiar with Database Toolbox usage, refer to these
examples as needed.



5 Using Database Toolbox™ Functions

Importing Data from Databases into the MATLAB®

Workspace

This example imports country data from the customers table in the Nwind
sample database into the MATLAB® workspace using the following functions:

database

exec

fetch (cursor.fetch)
logintimeout

ping

setdbprefs

For more information on these functions, see
matlab\toolbox\database\dbdemos\dbimportdemo.m.

Before you connect to a database, set the maximum time that you want to
allow the MATLAB software session to try to connect to a database to 5
seconds.

logintimeout (5)
ans=
5

Note If you are connecting to a database using a JDBC connection, you
must use different function syntax in this step. For more information, see
the logintimeout function reference page.

Use the database function to define a MATLAB variable, conn, to represent
the returned connection object. Pass the following arguments to this
function:

¢ The name of the database, SampleDB

® The username and password, which are specified as empty strings
because SampleDB does not require a user name or password



Importing Data from Databases into the MATLAB® Workspace

conn = database('SampleDB', '‘', '')

Enter conn at the command prompt to see the data.

conn =
Instance: 'SampleDB'
UserName: ''
Driver: []
URL: []
Constructor: [1x1 com.mathworks.toolbox.database.databaseConnect]
Message: []
Handle: [1x1 sun.jdbc.odbc.JdbcOdbcConnection]
TimeOut: 5
AutoCommit: 'on'
Type: 'Database Object'

Note If you are connecting to a database using a JDBC connection, you
need to specify different syntax for the database function. For more
information, see the database reference page.




5 Using Database Toolbox™ Functions

3 Use ping to check that the database connection status is successful.

ping(conn)
DatabaseProductName: 'ACCESS'
DatabaseProductVersion: '04.00.0000'
JDBCDriverName: 'JDBC-ODBC Bridge (odbcjt32.d11)‘
JDBCDriverVersion: '2.0001 (04.00.6200)'
MaxDatabaseConnections: 64
CurrentUserName: 'admin'
DatabaseURL: 'jdbc:odbc:SampleDB'
AutoCommitTransactions: 'True'

4 Use the exec function to open a cursor and execute an SQL statement.
Pass the following arguments to exec:
® conn, the name of the connection object

e select country from customers, a SQL statement that selects the
country column of data from the customers table

curs = exec(conn, 'select country from customers')



Importing Data from Databases into the MATLAB® Workspace

The exec function returns the MATLAB variable curs.

curs =
Attributes:
Data:
DatabaseObject:
RowLimit:
SQLQuery:
Message:
Type:
ResultSet:
Cursor:
Statement:
Fetch:

[1
0

[1x1 database]

0

'select country from customers'

[1

‘Database Cursor Object'

[1x1
[1x1
[1x1
0

sun.jdbc.odbc.JdbcOdbcResultSet]
com.mathworks.toolbox.database.sqlExec]
sun.jdbc.odbc.JdbcOdbcStatement]

5 The returned data contains strings, so you must convert it to a format that
supports strings. Use setdbprefs to specify the format cellarray:

setdbprefs('DataReturnFormat', 'cellarray')

6 Import data into the MATLAB workspace using the fetch function. Pass
the following arguments to this function:

® curs, the cursor object returned by exec

® 10, the maximum number of rows you want fetch to return

curs = fetch(curs,

curs
Attributes:
Data:
DatabaseObject:
RowLimit:
SQLQuery:
Message:

Type:
ResultSet:
Cursor:
Statement:
Fetch:

10)

[1

{10x1 cell}

[1x1
0

database]

'select country from customers'

[1

'Database Cursor Object'

[1x1
[1x1
[1x1
[1x1

sun.jdbc.odbc.JdbcOdbcResultSet]
com.mathworks.toolbox.database.sqlExec]
sun.jdbc.odbc.JdbcOdbcStatement]
com.mathworks.toolbox.database.fetchTheData]



5 Using Database Toolbox™ Functions

The curs object contains an element, Data, that contains the rows of data
in the cell array.

The Attributes field is always empty. To view cursor attributes, use the
attr function.

7 Assign the data element, curs.Data to the variable AA to display the Data
element of curs:

AA

AA =
'Germany'
'Mexico'
'Mexico'
UK
'Sweden'
'Germany'
'France'
'Spain’
'France'
‘Canada’

curs.Data



Importing Data from Databases into the MATLAB® Workspace

8 To import more rows of data, rerun fetch until you retrieve all data.

9 Continue with the next example. To stop working now and resume working
on the next example at a later time, close the cursor and the connection as
follows:

close(curs)
close(conn)



5 Using Database Toolbox™ Functions

Viewing Information About Imported Data

This example shows how to view information about imported data and close
the connection to the database using the following Database Toolbox™
functions:

® attr

® close

® cols

® columnnames

® rows

® width

For more information on these functions, see
matlab\toolbox\database\dbdemos\dbinfodemo.m.

1 Open the cursor and connection if needed:

conn = database('SampleDB', '', '');
curs = exec(conn, 'select country from customers');
setdbprefs('DataReturnFormat', 'cellarray');

curs = fetch(curs, 10);

2 Use rows to return the number of rows in the data set:

numrows = rows(curs)
numrows
10

3 Use cols to return the number of columns in the data set:

numcols = cols(curs)
numcols
1

4 Use columnnames to return the names of the columns in the data set:

colnames = columnnames(curs)

5-10



Viewing Information About Imported Data

colnames =
‘country'

5 Use width to return the column width, or size of the field, for the specified
column number:

colsize = width(curs, 1)
colsize
15

6 Use attr to view multiple attributes for a column:

attributes = attr(curs)
attributes =
fieldName: 'country'
typeName: 'VARCHAR'
typevalue: 12
columnWidth: 15
precision: []
scale: []
currency: 'false'’
readOnly: 'false'
nullable: 'true'
Message: []

Tip To import multiple columns, include a colnum argument in attr to
specify the number of columns whose information you want.

7 Close the cursor.

close(curs)

8 Continue with the next example. To stop working now and resume working
on the next example at a later time, close the connection.

close(conn)

5-11



5 Using Database Toolbox™ Functions

Exporting Data from the MATLAB® Workspace to a New
Record in a Database

This example does the following:

1 Retrieves freight costs from an orders table.

2 Calculates the average freight cost and records the date on which the
calculation was made.

3 Stores this data in a cell array.

4 Exports this data to an empty table.

You learn to use the following Database Toolbox™ functions:
* get

® fastinsert

® setdbprefs

For more information on these functions, see
matlab\toolbox\database\dbdemos\dbinsertdemo.m.

1 Connect to the data source, SampleDB, if needed:
conn = database('SampleDB', '‘', '');

2 Use setdbprefs to set the format for retrieved data to numeric:
setdbprefs('DataReturnFormat', 'numeric')

3 Import three rows of data the freight column of data from the orders
table.

curs = exec(conn, 'select freight from orders');
curs = fetch(curs, 3);

4 Assign the data to the MATLAB workspace variable AA:

AA = curs.Data

5-12



Exporting Data from the MATLAB® Workspace to a New Record in a Database

AA =
32.3800
11.6100
65.8300

5 Calculate average freight cost and assign the number of rows in the array
to numrows:

numrows = rows(curs);

6 Calculate the average of the data and assign the result to the variable
meanA:

meanA = sum(AA(:))/numrows
meanA =
36.6067

7 Assign the date on which the calculation was made to the variable D:
D = '20-Jan-2002";

8 Assign the date and mean to a cell array to export to a database. Put the
date in the first cell of exdata:

exdata(1,1) = {D}
exdata =
'20-Jan-2002'

Put the mean in the second cell of exdata:

exdata(1,2) = {meanA}
exdata =
'20-Jan-2002" [36.6067]

9 Define the names of the columns to which to export data. In this
example, the column names are Calc_Date and Avg_Cost, from the
Avg_Freight Cost table in the SampleDB database. Assign the cell array
containing the column names to the variable colnames:

colnames = {'Calc_Date', 'Avg_Cost'};

5-13



5 Using Database Toolbox™ Functions

10 Use the get function to determine the current status of the AutoCommit
database flag. This status determines whether the exported data is
automatically committed to the database. If the flag is off, you can undo
an update; if it is on, data is automatically committed to the database.

get(conn, 'AutoCommit')
ans =
on

The AutoCommit flag is set to on, so the exported data is automatically
committed to the database.

11 Use the fastinsert function to export the data into the Avg_Freight Cost
table. Pass the following arguments to this function:

® conn, the connection object for the database

® Avg Freight_Cost, the name of the table to which you are exporting
data

® The cell arrays colnames and exdata

fastinsert(conn, 'Avg_Freight_Cost', colnames, exdata)

fastinsert appends the data as a new record at the end of the
Avg _Freight_Cost table.

12 In Microsoft® Access™, view the Avg_Freight_Cost table to verify the

results.
& Avg_Freight_Cost ; T... M [=] E3
Calc_Date
20-Jan-2002

Record: HI 1 || 2(FEk |H|H9|

The Avg_Cost value was rounded to a whole number to match the
properties of that field in Access™.

13 Close the cursor.

5-14



Exporting Data from the MATLAB® Workspace to a New Record in a Database

close(curs)

14 Continue with the next example. To stop now and resume working with the
next example at a later time, close the connection.

close(conn)

5-15



5 Using Database Toolbox™ Functions

Replacing Existing Data in Databases with Data Exported
from the MATLAB® Workspace

This example updates the date field that you previously imported into the
Avg _Freight_Cost table using the following Database Toolbox™ functions:

® close

® yupdate

For more information on these functions, see
matlab\toolbox\database\dbdemos\dbupdatedemo.m.

1 If you have completed the previous example, skip this step. Otherwise,
enter the following commands:

conn = database('SampleDB', '‘', '');
colnames = {'Calc_Date', 'Avg_Cost'};
D = '20-Jan-2002"';
meanA = 36.6067;
exdata = {D, meanA}
exdata =

'20-Jan-2002" [36.6067]

2 Change the date in the Avg_Freight Cost table from 20-Jan-2002 to
19-dan-2002:

D = '"19-Jdan-2002'
3 Assign the new date value to the newdata cell array.

newdata(1,1) = {D}
newdata =
'19-Jan-2002'

4 Specify the record to update in the database by defining a SQL where
statement and assigning it to the variable whereclause. The record to
update is the record whose Calc_Date is 20-Jan-2002. Because the date
string is within a string, it is embedded within two single quotation marks
rather than one.

5-16



Replacing Existing Data in Databases with Data Exported from the MATLAB® Workspace

whereclause = 'where Calc_Date = ''20-Jan-2002"'"'"'
whereclause
where Calc_Date = '20-Jan-2002'

5 Export the data, replacing the record whose Calc_Date is 20-Jan-2002.

update(conn, 'Avg_Freight_Cost',colnames,newdata,whereclause)

6 In Microsoft® Access™, view the Avg_Freight_Cost table to verify the
results.

& Avg_Freight_Cost : T... M [=] E3

Calc_Date
19-Jan-2002

Record: H| 1 || 2k IHIHEI

7 Close the cursor and disconnect from the database.

close(conn)

5-17



5 Using Database Toolbox™ Functions

Exporting Multiple Records from the MATLAB® Workspace

This example does the following:

1 Imports monthly sales figures for all products from the tutorial database
into the MATLAB® workspace.

2 Computes total sales for each month.

3 Exports the totals to a new table.

You use the following Database Toolbox™ functions:

e fastinsert

® setdbprefs

For more information on these functions, see
matlab\toolbox\database\dbdemos\dbinsert2demo.m.

1 Ensure that the tutorial database is writable, that is, not read-only.

2 Use the database function to connect to the data source, assigning the

returned connection object as conn. Pass the following arguments to this
function:

® dbtoolboxdemo, the name of the data source

® username and password, which are passed as empty strings because no
user name or password is required to access the database

conn = database('dbtoolboxdemo', '', '');

3 Use the setdbprefs function to specify preferences for the retrieved data.
Set the data return format to numeric and specify that NULL values read
from the database are converted to 0 in the MATLAB workspace.

setdbprefs...
({'NullNumberRead'; 'DataReturnFormat'},{'0'; 'numeric'})

When you specify DataReturnFormat as numeric, the value for
NullNumberRead must also be numeric.

5-18



Exporting Multiple Records from the MATLAB® Workspace

4 Import data from the salesVolume table.

curs = exec(conn, 'select * from salesVolume');
curs fetch(curs);

5 Use columnnames to view the column names in the fetched data set:

columnnames(curs)

ans =
'StockNumber', 'January', 'February', 'March', 'April',
'May', 'dJune', 'July', 'August', 'September', 'October’,
"November', 'December’

6 View the data for January (column 2).

curs.Data(:,2)
ans =
1400
2400
1800
3000
4300
5000
1200
3000
3000
0

5-19



5 Using Database Toolbox™ Functions

7 Assign the dimensions of the matrix containing the fetched data set to
m and n.

[myn] = size(curs.Data)
m:
10

13

8 Use m and n to compute monthly totals. The variable tmp is the sales
volume for all products in a given month c. The variable monthly is the
total sales volume of all products for that month. For example, if c is 2,
row 1 of monthly is the total of all rows in column 2 of curs.Data, where
column 2 is the sales volume for January.

for ¢ = 2:n

tmp = curs.Data(:,c);
monthly(c-1,1) = sum(tmp(:));
end

View the result.

monthly
25100
15621
14606
11944
9965
8643
6525
5899
8632
13170
48345
172000

5-20



Exporting Multiple Records from the MATLAB® Workspace

9 Create a string array containing the column names into which you want to
insert the data, and assign the array to the variable colnames.

colnames{1,1} = 'salesTotal';
10 Use fastinsert to insert the data into the yearlySales table:

fastinsert(conn, 'yearlySales', colnames, monthly)

11 To verify that the data was imported correctly, view the yearlySales table
in the tutorial database.

Month salesTotal Revenue

id 25100 $0.00
| 15621 $0.00
| 14606 $0.00
- 11544 $0.00
B 9965 $0.00
| a543 $0.00
B B525 $0.00
] 5899 $0.00
B 9632 $0.00
| 13170 $0.00
| 45345 $0.00
- 172000 $0.00
* 0 $0.00
recard: 14 < [[T 1 v |wi|e#|cf 12

12 Close the cursor and the database connection.

close(curs)
close(conn)

5-21



5 Using Database Toolbox™ Functions

5-22

Retrieving BINARY or OTHER Sun™ Java™ SQL Data Types

This example retrieves images from the SampleDB data
source using a sample file that parses image data,
matlabroot/toolbox/database/vqgb/parsebinary.m.

1 Connect to the SampleDB data source.

conn = database('SampleDB', '', '');

2 Specify cellarray as the data return format preference.

setdbprefs('DataReturnFormat', 'cellarray');

3 Import the EmployeeID and Photo columns of data from the Employees
table.

curs = exec(conn, 'select EmployeeID,Photo from Employees')
curs fetch(curs);

4 View the data you imported.

curs.Data
ans =

[1] [21626x1 int8]
[2] [21626x1 int8]
[3] [21722x1 int8]
[4] [21626x1 int8]
[5] [21626x1 int8]
[6] [21626x1 int8]
[7] [21626x1 int8]
[8] [21626x1 int8]
[9] [21626x1 int8]

Note Some OTHER data type fields may be empty, indicating that the data
could not pass through the JDBC/ODBC bridge.

5 Assign the image element you want to the variable photo.



Retrieving BINARY or OTHER Sun™ Java™ SQL Data Types

photo = curs.Data{1,2};

6 Run parsebinary. This program writes the retrieved data to a file, strips
ODBC header information from it, and displays photo as a bitmap image
in a figure window. Ensure that your current directory is writable so that
the output of parsebinary can be written to it.

cd 'I:\MATLABFiles\myfiles
parsebinary(photo, 'BMP');

For more information on parsebinary, enter help parsebinary or view the
M-file in the MATLAB® Editor/Debugger by entering open parsebinary.

5-23



S

Using Database Toolbox™ Functions

5-24

Working with Database Metadata

In this section...

“Accessing Metadata” on page 5-24

“Resultset Metadata Objects” on page 5-29

Accessing Metadata

In this example, you use the following Database Toolbox™ functions to access
metadata:

® dmd
* get
® supports

e tables

1 Connect to the dbtoolboxdemo data source

conn = database('dbtoolboxdemo', '', '')
conn =
Instance: 'dbtoolboxdemo'
UserName: ''
Driver: []
URL: []

Constructor: [1x1
com.mathworks.toolbox.database.databaseConnect]
Message: []
Handle: [1x1 sun.jdbc.odbc.JdbcOdbcConnection]
TimeOut: O
AutoCommit: 'on'
Type: 'Database Object'

2 Use the dmd function to create a database metadata objectdbmeta and
return its handle, or identifier:

dbmeta = dmd(conn)
dbmeta DMDHandle:




Working with Database Metadata

[1x1 sun.jdbc.odbc.JdbcOdbcDatabaseMetaDatal]

3 Use the get function to assign database properties data, dometa, to the

variable v:
v = get(dbmeta)
V =

AllProceduresAreCallable:
AllTablesAreSelectable:
DataDefinitionCausesTransactionCommit:
DataDefinitionIgnoredInTransactions:
DoesMaxRowSizeIncludeBlobs:
Catalogs:

CatalogSeparator:
CatalogTerm:
DatabaseProductName:
DatabaseProductVersion:
DefaultTransactionIsolation:
DriverMajorVersion:
DriverMinorVersion:
DriverName:
DriverVersion:
ExtraNameCharacters:
IdentifierQuoteString:
IsCatalogAtStart:
MaxBinaryLiterallLength:
MaxCatalogNameLength:
MaxCharLiterallLength:
MaxColumnNamelLength:
MaxColumnsInGroupBy:
MaxColumnsInIndex:
MaxColumnsInOrderBy:
MaxColumnsInSelect:
MaxColumnsInTable:
MaxConnections:
MaxCursorNameLength:
MaxIndexLength:
MaxProcedureNamelLength:
MaxRowSize:
MaxSchemaNameLength:

OO - 4 4

{4x1 cell}

'DATABASE'

"ACCESS'

'04.00.0000"

2

2

1

[1x31 char]

'2.0001 (04.00.6200)"
[1x29 char]

1
255
260
255
64
10
10
10
255
255
64
64
255
64
4052

5-25



5 Using Database Toolbox™ Functions

MaxStatementLength: 65000
MaxStatements: O
MaxTableNameLength: 64
MaxTablesInSelect: 16
MaxUserNameLength: O
NumericFunctions: [1x73 char]
ProcedureTerm: 'QUERY'
Schemas: {}
SchemaTerm: ''
SearchStringEscape: '\'
SQLKeywords: [1x461 char]
StringFunctions: [1x91 char]

StoresLowerCaselIdentifiers:
StoresLowerCaseQuotedIdentifiers:
StoresMixedCaseIdentifiers:
StoresMixedCaseQuotedIdentifiers:
StoresUpperCaseldentifiers:
StoresUpperCaseQuotedIdentifiers:
SystemFunctions:

TableTypes:

TimeDateFunctions:

TypeInfo:

URL:

"jdbc:odbc:dbtoolboxdemo’

UserName:
NullPlusNonNullIsNull:
NullsAreSortedAtEnd:
NullsAreSortedAtStart:
NullsAreSortedHigh:
NullsAreSortedLow:
UsesLocalFilePerTable:
UsesLocalFiles:

0

- OO0 =+ 0o

{13x1 cell}
[1x111 char]
{16x1 cell}

"admin'

- O+ 00O0O0o

Tip For more information about the database metadata properties
returned by get, see the methods of the DatabaseMetaData object on the
Sun™ Java™ Web site at http://java.sun.com/j2se/1.4.2/docs/
api/java/sql/DatabaseMetaData.html

5-26


http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

Working with Database Metadata

4 Some information is too long to fit in the display area of the field, so the
size of the field data appears instead. The Catalogs element is shown as a
4-by-1 cell array. View the Catalog information.

v.Catalogs

ans =
'D:\Work\databasetoolboxfiles\Nwind'
'D:\Work\databasetoolboxfiles\Nwind_orig'
'‘D:\Work\databasetoolboxfiles\tutorial'
'D:\Work\databasetoolboxfiles\tutorial_copy'

5 Use the supports function to see what properties this database supports:

a
a:

supports(dbmeta)

AlterTableWithAddColumn:
AlterTableWithDropColumn:
ANSI92EntryLevelSQL:
ANSI92FullsQL:
ANSI92IntermediateSQL:
CatalogsInDataManipulation:
CatalogsInIndexDefinitions:
CatalogsInPrivilegeDefinitions:
CatalogsInProcedureCalls:
CatalogsInTableDefinitions:
ColumnAliasing:

Convert:

CoreSQLGrammar:
CorrelatedSubqueries:
DataDefinitionAndDataManipulationTransactions:
DataManipulationTransactionsOnly:
DifferentTableCorrelationNames:
ExpressionsInOrderBy:
ExtendedSQLGrammar:
FullOuterdoins:

GroupBy:

GroupByBeyondSelect:
GroupByUnrelated:
IntegrityEnhancementFacility:
LikeEscapeClause:

OO0 2 200 2T00 2 2012 A4 000 2 200 2 4 4

5-27



5 Using Database Toolbox™ Functions

LimitedOuterdoins:
MinimumSQLGrammar:
MixedCaseIdentifiers:
MixedCaseQuotedIdentifiers:
MultipleResultSets:
MultipleTransactions:
NonNullableColumns:
OpenCursorsAcrossCommit:
OpenCursorsAcrossRollback:
OpenStatementsAcrossCommit:
OpenStatementsAcrossRollback:
OrderByUnrelated:
Outerdoins:
PositionedDelete:
PositionedUpdate:
SchemasInDataManipulation:
SchemasInIndexDefinitions:
SchemasInPrivilegeDefinitions:
SchemasInProcedureCalls:
SchemasInTableDefinitions:
SelectForUpdate:
StoredProcedures:
SubqueriesInComparisons:
SubqueriesInExists:
SubqueriesIniIns:
SubqueriesInQuantifieds:
TableCorrelationNames:
Transactions:

Union:

UnionAll:

[N g e e g g e S o e e o NoNo o ol N e e G Nl el o R Yo R o R GGy o1

A 1 for a given property indicates that the database supports that property;
a 0 means that the database does not support the property.

Tip For more information about properties that the database supports, see
the methods of the DatabaseMetaData object on the Sun Java Web site at
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/
DatabaseMetaData.html.

5-28


http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

Working with Database Metadata

6 Alternatively, use the tables function to retrieve metadata, such as the
names and types of the tables in a catalog in the database. Pass the

following arguments to this function:

® dbmeta , the name of the database metadata object.

® tutorial, the name of the catalog from which you want to retrieve table

names.

t = tables(dbmeta, 'tutorial')

t =

'MSysAccessObjects' 'SYSTEM
'MSysIMEXColumns' 'SYSTEM
'MSysIMEXSpecs' 'SYSTEM
'MSysObjects’ "SYSTEM
'MSysQueries' "SYSTEM
'MSysRelationships' 'SYSTEM
"inventoryTable' "TABLE'
‘productTable’ '"TABLE'
'salesVolume' "TABLE'
'suppliers’ '"TABLE'
'yearlySales' 'TABLE'
"display’ "VIEW'

7 Close the database connection.

close(conn)

Resultset Metadata Objects

Use the resultset function to create resultset objects for cursor object. Then,
use the rsmd function to get metadata information about the resultset objects.

For more information, see the resultset and rsmd function reference pages.

TABLE'
TABLE'
TABLE'
TABLE'
TABLE'
TABLE'

5-29



5 Using Database Toolbox™ Functions

5-30

Using Driver Functions

This example uses the following Database Toolbox™ functions to create driver
and drivermanager objects, and to get and set their properties:

® drivermanager

® driver

® get

® isdriver

® set

Note There is no equivalent M-file demo available for this example, because
this example relies on a specific system-to-JDBC connection and database.
Your configuration is different from the one in this example, so you cannot
run these examples exactly as written. Instead, substitute appropriate values
for your own system. See your database administrator for more information.

1 Connect to the database.

c = database('orct','scott', 'tiger',...
‘oracle.jdbc.driver.OracleDriver',...
'jdbc:oracle:thin:@144.212.123.24:1822:");

2 Use the driver function to construct a driver object and return
its handle, for a specified database URL string of the form
jdbc:subprotocol:subname.

d = driver('jdbc:oracle:thin:@144.212.123.24:1822:")
DriverHandle: [1x1 oracle.jdbc.driver.OracleDriver]

3 Use the get function to get information, such as version data, for the
driver object.

%
V:
MajorVersion: 1

get(d)



Using Driver Functions

MinorVersion: O

4 Use isdriver to verify that d is a valid JDBC driver object.
isdriver(d)

ans =
1

This result shows that d is a valid JDBC driver object. If it is a not valid
JDBC driver object, the returned result is 0.

5 Use the drivermanager function to create a drivermanager object dm.

dm = drivermanager

6 Get properties of the drivermanager object.

A%
V:

get(dm)

Drivers: {'sun.jdbc.odbc.JdbcOdbcDriver@761630"'
[1x38 char]}
LoginTimeout: O
LogStream: []
7 Set the LoginTimeout value to 10 for all drivers loaded during this session.

set(dm, 'LoginTimeout',10)

Verify the LoginTimeout value.

\%
V:

get(dm)

Drivers: {'sun.jdbc.odbc.JdbcOdbcDriver@761630'}
LoginTimeout: 10
LogStream: []

5-31



5 Using Database Toolbox™ Functions

5-32

About Objects and Methods in the Database Toolbox™

Software

This toolbox is an object-oriented application. You do not need to be familiar
with the product’s object-oriented implementation to use it; this information
is provided for reference purposes.

The Database Toolbox™ software includes the following objects:

Cursor

Database

Database metadata
Driver
Drivermanager
Resultset

Resultset metadata

Each object has its own method directory, whose name begins with an @ sign,
in the matlabroot/toolbox/database/database directory. M-file functions
in the directory for each object provide methods for operating on the object.

Object-oriented characteristics of the toolbox enable you to:

Use constructor functions to create and return information about objects.

For example, to create a cursor object containing query results, run the
fetch (cursor.fetch) function. The object and stored information about
the object are returned. Because objects are MATLAB® structures, you can
view elements of the returned object.



About Objects and Methods in the Database Toolbox™ Software

This example uses the fetch function to create a cursor object curs.

curs =
Attributes: []
Data: {10x1 cell}
DatabaseObject: [1x1 database]
RowLimit: O
SQLQuery: 'select country from customers'
Message: []
Type: 'Database Cursor Object'
ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]
Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]
Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

View the contents of the Data element in the cursor object.

curs.Data

ans =
'Germany'
'Mexico'
'Mexico'
UK
'Sweden'
'Germany'
'France'
'Spain’
'France'

e Use overloaded functions.

Objects allow the use of overloaded functions, which simplify usage because
you only need to use one function to operate on objects. For example, use
the get function to view properties of an object.

¢ (Create custom methods that operate on Database Toolbox objects and
store them in the MATLAB workspace as M-files. For more information,
see “Methods — Defining Class Operations” in the Developing MATLAB
Classes documentation.

5-33



5 Using Database Toolbox™ Functions

5-34



Function Reference

General (p. 6-2)
Database Connection (p. 6-2)
SQL Cursor (p. 6-3)

Importing Data into the MATLAB®
Workspace from a Database (p. 6-3)

Database Metadata Object (p. 6-4)
Exporting Data from the MATLAB®
Workspace to a Database (p. 6-5)
Driver Object (p. 6-5)
Drivermanager Object (p. 6-6)
Resultset Object (p. 6-6)

Resultset Metadata Object (p. 6-7)

Visual Query Builder (p. 6-7)

Settings for login time, retrieval
format, and more

Create, test, close, and set
parameters for database connection

Set parameters for and execute
query

Import data from database to the
MATLAB® workspace, and get
information about imported data

Information about database data

Export data from the MATLAB
workspace to database

Construct and get information about
database driver

Construct and get information about
database drivermanager

Construct and get information about
resultset

Construct and get information about
resultset metadata

Start query builder GUI and
configure JDBC data source



6 Function Reference

General

logintimeout

setdbprefs

Database Connection

close

database
get

getdatasources
isconnection
isreadonly
ping

set

setdbprefs

sql2native

Set or get time allowed to establish
database connection

Set preferences for retrieval format,
errors, NULLs, and more

Close database connection, cursor, or
resultset object

Connect to database
Retrieve object properties

Return names of ODBC and JDBC
data sources on system

Detect whether database connections
are valid

Detect whether database connection
is read-only

Get status information about
database connection

Set properties for database, cursor,
or drivermanager object

Set preferences for retrieval format,
errors, NULLs, and more

Convert JDBC SQL grammar to
SQL grammar native to system



SQL Cursor

SQL Cursor

close

exec

get

querytimeout

runstoredprocedure

set

Close database connection, cursor, or
resultset object

Execute SQL statement and open
cursor

Retrieve object properties

Get time specified for SQL queries
to succeed

Call stored procedure with input and
output parameters

Set properties for database, cursor,
or drivermanager object

Importing Data into the MATLAB® Workspace from a

Database

attr

cols

columnnames

cursor.fetch

database.fetch

fetch
fetchmulti

Retrieve attributes of columns in
fetched data set

Retrieve number of columns in
fetched data set

Retrieve names of columns in fetched
data set

Import data into MATLAB®
workspace from cursor object created
by exec

Execute SQL statement to import
data into MATLAB workspace

cursor.fetch or database.fetch

Import data from multiple resultsets



6 Function Reference

Database Metadata Object

querybuilder

rows

width

bestrowid

columnprivileges

columns

crossreference

dmd

exportedkeys

get

importedkeys

indexinfo

primarykeys

procedurecolumns

procedures

Start SQL query builder GUI to
import and export data

Return number of rows in fetched
data set

Return field size of column in fetched
data set

Unique identifier for row in database
table

List database column privileges

Returns database table column
names

Retrieve information about primary
and foreign keys

Construct database metadata object

Retrieve information about exported
foreign keys

Retrieve object properties

Return information about imported
foreign keys

Return indices and statistics for
database tables

Get primary key information for
database table or schema

Get stored procedure parameters
and result columns of catalogs

Get stored procedures for catalogs



Exporting Data from the MATLAB® Workspace to a Database

supports

tableprivileges
tables

versioncolumns

Detect whether property is supported
by database metadata object

Return database table privileges
Return database table names

Automatically update table columns

Exporting Data from the MATLAB® Workspace to a

Database

commit

insert

querybuilder

rollback
update

Driver Object

driver
get

isdriver

isjdbc

Make database changes permanent

Add MATLAB® data to database
tables (deprecated; use fastinsert
instead)

Start SQL query builder GUI to
import and export data

Undo database changes

Replace data in database table with
MATLAB data

Construct database driver object
Retrieve object properties

Detect whether driver is a valid
JDBC driver object

Detect whether driver is JDBC
compliant

6-5



6 Function Reference

isurl

register

unregister

Drivermanager Object

drivermanager

get

set

Resultset Object

clearwarnings
close

get

isnullcolumn
namecolumn

resultset

Detect whether database URL is
valid

Load database driver

Unload database driver

Construct database drivermanager
object

Retrieve object properties

Set properties for database, cursor,
or drivermanager object

Clear warnings for database
connection or resultset

Close database connection, cursor, or
resultset object

Retrieve object properties

Detect whether last record read in
resultset is NULL

Map resultset column name to
resultset column index

Construct resultset object



Resultset Metadata Object

Resultset Metadata Object

get

rsmd

Visual Query Builder

confds

querybuilder

Retrieve object properties

Construct resultset metadata object

Configure JDBC data source for
Visual Query Builder

Start SQL query builder GUI to
import and export data

6-7



6 Function Reference

6-8



Functions — Alphabetical
List




attr

Purpose

Syntax

Description

Retrieve attributes of columns in fetched data set

attributes = attr(curs, colnum)
attributes = attr(curs)

e attributes = attr(curs, colnum) retrieves attribute information
for:
= The column number colnum
= in the fetched data set curs

® attributes = attr(curs) retrieves attribute information for all
columns in the fetched data set curs and stores the data in a cell
array.

® attributes = attr(colnum) displays attributes of column colnum.

A list of returned attributes appears in the following table.

Atiribute Description

fieldName Name of the column

typeName Data type

typeValue Numerical representation of the data type
columnWidth Size of the field

precision Precision value for floating and double data

types; an empty value is returned for strings

scale Precision value for real and numeric data
types; an empty value is returned for strings

currency If true, data format is currency
readOnly If true, data cannot be overwritten
nullable If true, data can be NULL

Message Error message returned by fetch




attr

See Also

cols, columnnames, columns, cursor.fetch,dmd, get, tables, width

7-3



bestrowid

Purpose

Syntax

Description

Examples

See Also

Unique identifier for row in database table

b = bestrowid(dbmeta, 'cata', 'sch')
b = bestrowid(dbmeta, 'cata', 'sch', 'tab')
® b = bestrowid(dbmeta, 'cata', 'sch') returns the optimal set of

columns in a table that uniquely identifies:

a row in the schema sch, in the catalog cata, for the database whose
database metadata object is dbmeta.

b = bestrowid(dbmeta, 'cata', 'sch', 'tab') returns the
optimal set of columns that uniquely identifies a row in table tab, in
the schema sch, in the catalog cata, for the database whose database
metadata object is dbmeta.

Run bestrowid, passing it the following arguments:

dbmeta, the database metadata object

msdb, the catalog
® geck, the schema

builds, the table

b
b:

bestrowid(dbmeta, 'msdb', 'geck', 'builds')
'build_id'

The result indicates that each entry in the build_id column is unique
and identifies the row.

columns, dmd, get, tables



clearwarnings

Purpose

Syntax

Description

Examples

See Also

Clear warnings for database connection or resultset

clearwarnings(conn)
clearwarnings(rset)

® clearwarnings(conn) clears warnings reported for the database
connection object conn.

® clearwarnings(rset) clears warnings reported for the resultset
object rset.

Tip For command-line help on clearwarnings, use the overloaded
methods:

help database/clearwarnings
help resultset/clearwarnings

clearwarnings(conn) clears reported warnings for the database
connection object conn.

database, get, resultset



close

Purpose
Syntax

Description

Close database connection, cursor, or resultset object
close(object)

close(object) closes object, which frees up resources.

Allowable objects for close are listed in the following table.

Action Performed by
Object Description close(object)
conn Database connection Closes conn
object
curs Cursor object Closes curs
rset Resultset object Closes rset

Database connections, cursors, and resultsets remain open until you
close them using the close function. Always close a cursor, connection,
or resultset when you finish using it. Close a cursor before closing the
connection used for that cursor.

Note The MATLAB® software session closes open cursors and
connections when exiting, but the database might not free up the
cursors and connections.

Tip For command-line help on close, use the overloaded methods:

help database/close
help cursor/close
help resultset/close




close

Examples

See Also

Close the cursor curs and the connection conn.

close(curs)
close(conn)

cursor.fetch, database, exec, resultset



cols

Purpose Retrieve number of columns in fetched data set
Syntax numcols = cols(curs)
Description numcols = cols(curs) returns the number of columns in the fetched

data set curs.

Examples Display three columns in the fetched data set curs.

numcols = cols(curs)

numcols
3

See Also attr, columnnames, columnprivileges, columns, cursor.fetch, get,
rows, width

7-8



columnnames

Purpose
Syntax

Description

Examples

See Also

Retrieve names of columns in fetched data set
colnames = columnnames (curs)

colnames = columnnames (curs) returns the column names in the
fetched data set curs as a 1-by-N vector of field names.

Display the columns in the fetched data set curs:

colnames = columnnames(curs)
colnames =
"Address', 'City', 'Country’

attr, cols, columnprivileges, columns, cursor.fetch, get, width

7-9



columnprivileges

7-10

Purpose

Syntax

Description

Examples

List database column privileges

1p = columnprivileges(dbmeta, 'cata', 'sch', 'tab')
1p = columnprivileges(dbmeta, 'cata', 'sch', 'tab', '1l')
® 1p = columnprivileges(dbmeta, 'cata', 'sch', 'tab') returns

a list of privileges for:

= All columns in the table tab

= In the schema sch

= In the catalog cata

= For the database whose database metadata object is dbmeta

® 1p = columnprivileges(dbmeta, 'cata', 'sch', 'tab', '1"')
returns a list of privileges for:

= column 1 in the table tab
= In the schema sch
= In the catalog cata

= For the database whose database metadata object is dbmeta

1 Use columnprivileges, passing in the following arguments:
® The database metadata object.dbmeta
® The catalog msdb
® The schema geck
¢ The table builds
® The column name build_id
1p = columnprivileges(dbmeta, 'msdb', 'geck', 'builds',...
‘build_id')
1p =
'builds’ "build_id' {1x4 cell}



columnprivileges

This result shows:
e The table name, builds, in column 1
® The column name, build_id, in column 2

¢ The column privileges, 1p, in column 3

2 View the contents of the third column in 1p.

1p{1,3}
ans =
"INSERT' '"REFERENCES'' 'SELECT' "UPDATE"
See Also cols, columns, columnnames, dmd, get

7-11



columns

Purpose Returns database table column names
Syntax 1 = columns(dbmeta, 'cata')

1 = columns(dbmeta, 'cata', 'sch')

1 = columns(dbmeta, 'cata', 'sch', 'tab')
Description e 1 = columns(dbmeta, 'cata') returns a list of:

All column names in the catalog cata

For the database whose database metadata object is dbmeta
e 1 = columns(dbmeta, 'cata', 'sch') returns a list of:

All column names in the schema sch

In the catalog cata

For the database whose database metadata object is dbmeta

e 1 = columns(dbmeta, 'cata', ‘'sch', 'tab') returns a list of
columns for:

= The table tab
= In the schema sch
= In the catalog cata

= For the database whose database metadata object is dbmeta

Examples 1 Run columns, passing it the following arguments:
* The database metadata object dbmeta
e The catalog orcl
® The schema schSCOTT

1 = columns(dbmeta, 'orcl', 'SCOTT')
l:

'"BONUS' {1x4 cell}

'DEPT' {1x3 cell}

7-12



columns

"EMP' {1x8 cell}
'SALGRADE ' {1x3 cell}
'TRIAL' {1x3 cell}

The results show the names of the five tables in dbmeta, and cell
arrays containing the column names in each table.

2 View the column names for the BONUS table:

1{1,2}
ans =
'ENAME ' 'JOB' 'SAL' 'coMM'

See Also attr, bestrowid, cols, columnnames, columnprivileges, dmd, get,

versioncolumns

7-13



commit

7-14

Purpose
Syntax

Description

Examples

See Also

Make database changes permanent
commit(conn)

commit (conn) makes permanent changes made to the database
connection conn since the last commit or rollback function was run. To
run this function, the AutoCommit flag for conn must be off.

Example 1: Check the Status of the Autocommit Flag
Check that the status of the AutoCommit flag for connection conn is off.
get(conn, 'AutoCommit')

ans =
off

Example 2: Commit Data to a Database

1 Insert exdata into the columns DEPTNO, DNAME, and LOC in the table
DEPT, for the data source conn.

fastinsert(conn, 'DEPT', {'DEPTNO';'DNAME';'LOC'},...
exdata)

2 Commit this data.

commit (conn)

database, exec, fastinsert, get, rollback, update



confds

Purpose

GUI
Alternatives

Syntax

Description

Configure JDBC data source for Visual Query Builder

Select Define JDBC data sources from the Visual Query Builder
Query menu.

confds

confds displays the VQB Define JDBC data sources dialog box. Use
confds only to build and run queries using Visual Query Builder with
JDBC drivers.

=101 x|

) Define JDBC data sources

JOBC data sources
Create nev file... Use existing file... I
JDBC data =ource file:
[rats SouUCE: atme:
=[5
[ er:
LIRL:
=
Remave | Ldd f Update | Tiest |
Ok I Cancel I Help I

For information about how to use the Define JDBC data sources dialog
box to configure JDBC drivers, see “Setting Up Data Sources for Use
with JDBC Drivers” in the Database Toolbox Getting Started Guide.

Tip Use the database function to define JDBC data sources
programmatically.

7-15



confds

See Also database, querybuilder

7-16



crossreference

Purpose

Syntax

Description

Examples

Retrieve information about primary and foreign keys

f = crossreference(dbmeta, 'pcata', 'psch', 'ptab', 'fcata',
‘fsch', 'ftab')
f = crossreference(dbmeta, 'pcata', 'psch', 'ptab‘,
'fcata', 'fsch', 'ftab') returns information about the relationship

between foreign keys and primary keys for the database whose database
metadata object is dbmeta. The primary key information is for:

e The table ptab
® In the primary schema psch

® Of the primary catalog pcata
The foreign key information is for:

® The foreign table ftab
® In the foreign schema fsch
® Of the foreign catalog fcata
Run crossreference to get primary and foreign key information given
the following arguments:
® The database metadata object.dbmeta
® The primary and foreign catalog orcl
® The primary and foreign schema SCOTT
¢ The table DEPT that contains the referenced primary key
¢ The table EMP that contains the foreign key
f = crossreference(dbmeta, 'orcl', 'SCOTT', 'DEPT',...

‘orcl', 'SCOTT', 'EMP")
f = Columns 1 through 7

7-17



crossreference

‘orcl' 'SCOTT! 'DEPT' 'DEPTNO' ‘orcl'
'SCOTT' "EMP

Columns 8 through 13
'DEPTNO' 1! ‘null’ 1! "FK_DEPTNO'...
'PK_DEPT'

The results show the following primary and foreign key information.

Column | Description Value

1 Catalog that contains primary key, orcl
referenced by foreign imported key

2 Schema that contains primary key, SCOTT
referenced by foreign imported key

3 Table that contains primary key, DEPT
referenced by foreign imported key

4 Column name of primary key, DEPTNO
referenced by foreign imported key

5 Catalog that has foreign key orcl

6 Schema that has foreign key SCOTT

7 Table that has foreign key EMP

8 Foreign key column name that DEPTNO
references the primary key in another
table

9 Sequence number within foreign key | 1

10 Update rule, that is, what happens to | null
the foreign key when the primary key
updates

11 Delete rule, that is, what happens to 1
the foreign key when the primary key
is deleted

7-18



crossreference

Column | Description Value
12 Foreign imported key name FK_DEPTNO
13 Primary key name in referenced table | PK_DEPT

There is only one foreign key in the schema SCOTT. The table DEPT
contains a primary key DEPTNO that is referenced by the field DEPTNO in
the table EMP. The field DEPTNO in the table EMP table is a foreign key.

Tip For a description of the codes for update and delete rules, see
the getCrossReference property on the Sun™ Java™ Web site at
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/
DatabaseMetaData.html.

See Also dmd, exportedkeys, get, importedkeys, primarykeys

7-19


http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

cursor.fetch

7-20

Purpose

GUI
Alternatives

Syntax

Description

Remarks

Import data into MATLAB® workspace from cursor object created by
exec

Retrieve data using Visual Query Builder. For more information about
Visual Query Builder, see Chapter 4, “Using Visual Query Builder”.

curs = fetch(curs, RowLimit)
curs = fetch(curs)

e curs = fetch(curs, RowLimit) imports rows of data into the object
curs from the open SQL cursor curs, up to the maximum RowLimit.

e curs = fetch(curs) imports rows of data from the open SQL cursor
curs into the object curs, up to RowLimit. Use the set function to
specifyRowLimit.

Data is stored in a MATLAB cell array, structure, or numeric matrix. It
is a best practice to assign the object returned by fetch to the variable
curs from the open SQL cursor. This practice results in only one open
cursor object, which consumes less memory than multiple open cursor
objects.

The next time fetch is run, records are imported starting with the
row following the specified RowLimit. If you do not specify a RowLimit,
fetch imports all remaining rows of data.

Fetching large amounts of data can result in memory or speed issues. In
this case, use RowLimit to limit how much data you retrieve at once.

This page documents fetch for a cursor object. For more information
about the use of fetch, cursor.fetch, and database.fetch, see
fetch. Unless otherwise noted, fetch in this documentation refers to
cursor.fetch, rather than database.fetch.



cursor.fetch

Examples Example 1: Import All Rows of Data

1 Use fetch to import all data into the cursor object curs, and store
the data in a cell array contained in the cursor object field curs.Data.

curs = fetch(curs)
curs =
Attributes: []
Data: {91x1 cell}
DatabaseObject: [1x1 database]
RowLimit: O
SQLQuery: 'select country from customers'
Message: []
Type: 'Database Cursor Object'
ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]
Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]
Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
Fetch: [1x1 com.mathworks.toolbox.database.fetchTheDatal]

2 Display data in curs.Data. Due to space constraints, only a portion
of the returned data appears here.

curs.Data

ans =
'Germany'
'Mexico'
'Mexico'
UK
'Sweden'

"USA'
'Finland'
'Poland’

7-21



cursor.fetch

Example 2 — Import a Specified Number of Rows

a Use the RowLimit argument to retrieve only the first three rows
of data.

curs = fetch(curs, 3)
curs

Attributes: []
Data: {3x1 cell}
DatabaseObject: [1x1 database]
RowLimit: O
SQLQuery: 'select country from customers'
Message: []
Type: 'Database Cursor Object'
ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]
Cursor: ...
[1x1 com.mathworks.toolbox.database.sqlExec]
Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
Fetch:
[1x1 com.mathworks.toolbox.database.fetchTheDatal]

b View the data.

curs.Data

ans =
'Germany'
'Mexico'
'Mexico'

a Rerun the fetch function to return the second three rows of data.

curs = fetch(curs, 3);

b View the data.

7-22



cursor.fetch

curs.Data
ans =
IUKI
'Sweden'
'Germany'

Example 3 — Import Rows Iteratively until You Retrieve All
Data

Use the RowLimit argument to retrieve the first ten rows of data, and
then rerun the import using a while loop, retrieving ten rows at a
time. Continue until you have retrieved all data, which occurs when
curs.Datais 'No Data'.

% Initialize RowLimit (fetchsize)
fetchsize = 10
% Check for more data. Retrieve and display all data.
while ~strcmp(curs.Data, 'No Data')
curs=fetch(curs,fetchsize);
curs.Data(:)
end
ans =
'No Data'

Example 4 — Import Numeric Data

Import a column of numeric data, using the setdbprefs function to
specifynumeric as the format for the retrieved data.
conn = database('SampleDB', '', '');
curs=exec(conn, 'select all UnitsInStock from Products');
setdbprefs('DataReturnFormat', 'numeric')
curs=fetch(curs,3);
curs.Data
ans =
39
17
13

7-23



cursor.fetch

Example 5 — Import BOOLEAN Data

1 Import data that includes a BOOLEAN field, using the setdbprefs
function to specify cellarray as the format for the retrieved data.

conn = database('SampleDB', , ')
curs=exec(conn, 'select ProductName,
Discontinued fromProducts');
setdbprefs('DataReturnFormat', 'cellarray')
curs=fetch(curs,5);

A=curs.Data

A =
'Chai' [0]
'Chang' [0]
'Aniseed Syrup' [0]

[1x28 char] [0]
[1x22 char] [1]

2 View the class of the second column of A:

class(A{1,2}
ans =
logical

See Also attr, cols, columnnames, database, database.fetch, exec, fetch,
fetchmulti, get, logical, rows, resultset, set, width, Chapter 4,
“Using Visual Query Builder”,

“Retrieving BINARY or OTHER Sun™ Java™ SQL Data Types” on
page 5-22

7-24



database

Purpose

GUI
Alternatives

Syntax

Description

Connect to database

Connect to databases using Visual Query Builder. For more information
on Visual Query Builder, see Chapter 4, “Using Visual Query Builder”.

conn = database('datasourcename', 'username’', 'password')
conn database('databasename', 'username’,...
‘password', 'driver', 'databaseurl’)

conn = database('datasourcename', 'username’', 'password')
connects a MATLAB® software session to a database via an ODBC
driver and assigns the returned connection object to conn. The
arguments passed to this function are as follows:

e datasourcename: The data source to which you connect.

® username and password are the user name and password required
to connect to the database. If a user name or password are not
required to connect to your database, specify empty strings for these
arguments.

conn = database('databasename', 'username’',...

'password', 'driver', 'databaseurl') connects a MATLAB software
session to a database and assigns the returned connection object to
conn. The arguments passed to this function are as follows:

® databasename: The name of the database to which you connect.

e driver: The name of your JDBC driver.

Note The JDBC driver is sometimes referred to as the class that
implements the Sun™ Java™ SQL driver for your database.

7-25



database

7-26

Examples

® username and password: The user name and password required
to connect to the database. If a user name or password are not
required to connect to your database, specify empty strings for these
arguments.

¢ Find the correct driver name

databaseurl: A JDBC URL object of the form
jdbc:subprotocol:subname. subprotocol is a database

type, such as Oracle®. subname may contain other information used
by driver, such as the location of the database and/or a port number.
subname may take the form //hostname:port/databasename.

If database establishes a database connection, it returns information
about the connection object, as shown in the following example:

Instance: 'SampleDB'
UserName: ''
Driver: []
URL: []
Constructor: [1x1 com.mathworks.toolbox.database.databaseConnect]
Message: []
Handle: [1x1 sun.jdbc.odbc.JdbcOdbcConnection]
TimeOut: O
AutoCommit: 'off'
Type: 'Database Object'

Example 1 — Establish an ODBC Connection

Connect to an ODBC data source called Pricing, specifying user name
mike, and password bravo.

conn = database('Pricing', 'mike', 'bravo');

Example 2 — Establish an ODBC Connection without
Specifying a User Name and Password

Connect to an ODBC data source SampleDB where a user name and
password are not required to access the database.



database

conn = database('SampleDB','"',"'");

Example 3 — Establish a JDBC Connection

In this example, the following arguments are passed to the database
function:

® oracle, the database to which you connect

® scott and tiger, the required user name and password

® oracle.jdbc.driver.OracleDriver, the oci7 JDBC driver name
® jdbc:oracle:oci7, the URL that specifies the location of the

database server

conn = database('oracle', 'scott', 'tiger’',...
'oracle.jdbc.driver.OracleDriver', 'jdbc:oracle:oci7:");

The JDBC name and URL take different forms for different databases,
as shown in the examples in the following table.

Database

JDBC Driver and Database URL Examples

IBM® Informix®

JDBC driver: com.informix. jdbc.IfxDriver

Database URL: jdbc:informix-sqli://161.144.202.206:3000:
INFORMIXSERVER=stars

MySQL® JDBC driver: twz1.jdbc.mysql.jdbcMysqglDriver

Database URL: jdbc:z1MySQL://natasha:3306/metrics

JDBC driver: com.mysql.jdbc.Driver

Database URL: jdbc:mysql://devmetrics.mrkps.com/testing
Oracle JDBC driver: oracle.jdbc.driver.OracleDriver

oci7 drivers

Database URL: jdbc:oracle:oci7:@rex

7-27



database

Database JDBC Driver and Database URL Examples

Oracle JDBC driver: oracle.jdbc.driver.OracleDriver

cald Gt Database URL: jdbc:oracle:oci8:@111.222.333.44:1521:

Database URL: jdbc:oracle:oci8:@frug

Oracle JDBC driver: oracle.jdbc.driver.OracleDriver

it Ghatyes Database URL: jdbc:oracle:thin:@144.212.123.24:1822:

Oracle 10 JDBC driver: oracle.jdbc.driver.OracleDriver

connections Database URL: jdbc:oracle:thin: (do not specify the target name
with JDBC (thin | and port)

drivers)

In this example, the target machine on which the database server
resides is 144.212.123.24 and the port number is 1822.

PostgreSQL JDBC driver: org.postgresql.Driver
Database URL: jdbc:postgresql://masd/MOSE

PostgreSQL JDBC driver: org.postgresql.Driver

with SSL

Database URL: jdbc:postgresql:servername:dbname:ssl=
true&sslfactory=org.postgresql.ssl.NonValidatingFactory& (the
trailing & is required)

connection

Microsoft® SQL | JDBC driver: com.microsoft.jdbc.sqlserver.SQLServerDriver

™
ST Database URL:
jdbc:sqglserver://localhost:port;database=databasename

Sybase SQL JDBC driver: com.sybase.jdbc.SybDriver
Server® and
Sybase® SQL
Anywhere®

Database URL: jdbc:sybase:Tds:yourhostname:yourportnumber/

See Also close, dmd, exec, fastinsert, get, getdatasources, isconnection,
isreadonly, logintimeout, ping, supports, update ,Chapter 4,
“Using Visual Query Builder”

7-28



database.fetch

Purpose

Syntax

Description

Remarks

Examples

Execute SQL statement to import data into MATLAB® workspace

results = fetch(conn, sqlquery)
results = fetch(conn, sqlquery, RowInc)

® results = fetch(conn, sqlquery) executes the SQL statement
sqlquery and imports data for the open connection object
conn.results is a cell array, structure, or numeric matrix, based on
specifications set by setdbprefs.

® results = fetch(conn, sqlquery, RowInc) executes the SQL
statement sqlquery and imports RowInc rows of data at a time,
given the open connection object conn. Data is stored in a MATLAB
cell array, structure, or numeric matrix, based on specifications set
by setdbprefs.

RowInc, manages speed and memory issues. It is a good practice to use
RowInc when importing large amounts of data.

For more information on SQL statements, see exec.

® This page documents fetch for a database object. For more
information about the relationship with cursor.fetch, see fetch.

® The order of records in your database does not remain constant. Use
the values in column names to identify records. Use the SQL ORDER
BY command in your sqlquery statement to sort data.

Example 1 — Import Data

1 Import the country column from the customers table in the
SampleDB database.

conn= database('SampleDB',"'"',"'"');
setdbprefs('DataReturnFormat', 'cellarray')
results=fetch(conn, 'select country from customers')

results =

7-29



database.fetch

'Germany'
'Mexico'
'Mexico'
LUK
'Sweden'

'Finland'’
'Brazil'
'USA'
'Finland'’
'Poland’

2 View the size of the cell array into which the results were returned.

size(results)ans =

91 1

Tip Try running this example using the rowinc argument to address
memory and speed issues.

7-30



database.fetch

See Also

Example 2— Import Two Columns of Data and View
Information

1 Import the ProductName and Discontinued columns from the
SampleDB database.

conn = database('SampleDB', '', '');

setdbprefs('DataReturnFormat’', 'cellarray')
results=fetch(conn, 'select ProductName, Discontinued from Products');

2 View the size of the cell array into which the results were returned.

size(results)
ans =

77 2

3 To see the results for the first row of data, run:

results(1,:)
ans =
'Chai'’ [0]

4 View the data type of the second element in the first row of data.

class(results{i1,2})
ans =
logical

cursor.fetch, database, exec, fetch, logical,

“Retrieving BINARY or OTHER Sun™ Java™ SQL Data Types” on
page 5-22

7-31



dmd

7-32

Purpose
Syntax

Description

Examples

See Also

Construct database metadata object
dbmeta = dmd(conn)

dbmeta = dmd(conn)) constructs a database metadata object for the
database connection conn. Use get and supports to obtain properties
of dbmeta. Use dmd and get (dbmeta) to obtain information you need
about a database, such as table names required to retrieve data.

For a list of functions that operate on database metadata objects, enter:

help dmd/Contents

e dbmeta = dmd(conn) creates a database metadata object dbmeta
for the database connection conn.

e v = get(dbmeta) lists properties of the database metadata object.

columns, database, get, supports, tables



driver

Purpose
Syntax
Description

Examples

See Also

Construct database driver object

d = driver('s')

d = driver('s') constructs a database driver object d from s, where s
is a database URL string of the form jdbc:odbc:<name> or <name>. The
driver object d is the first driver that recognizes s.

d = driver('jdbc:odbc:thin:@144.212.123.24:1822:") creates
driver object d.

get, isdriver, isjdbc, isurl, register

7-33



drivermanager

7-34

Purpose
Syntax

Description

Examples

See Also

Construct database drivermanager object
dm = drivermanager

dm = drivermanager constructs a database drivermanager object
which comprises the properties for all loaded database drivers. Use get
and set to obtain and change the properties of dm.

e dm = drivermanager creates a database drivermanager object dm.

® get(dm) returns properties of the drivermanager object dm.

get, register, set



exec

Purpose

GUI
Alternatives

Syntax

Description

Remarks

Execute SQL statement and open cursor

Query databases using Visual Query Builder. For more information on
Visual Query Builder, see Chapter 4, “Using Visual Query Builder”.

curs = exec(conn, 'sqlquery')

curs = exec(conn, 'sqglquery') executes the SQL statement
sqlquery for the database connection conn, and opens a cursor.

Running exec returns the cursor object to the variable curs and returns
additional information about the cursor object. The sqlquery argument
can be a stored procedure for that database connection, of the form
{call sp_name (parmi,parm2,...)}.

® After opening a cursor, use fetch to import data from the cursor. Use
resultset, rsmd, and statement to get properties of the cursor.

® Use querytimeout to specify the maximum amount of time for which
exec tries to execute the SQL statement.

® You can have multiple cursors open at one time.
® A cursor stays open until you close it using the close function.

® Unless noted in this reference page, the exec function supports all
valid SQL statements, such as nested queries.

® The order of records in your database is not constant. Use values in
column names to identify records. Use the SQL ORDER BY command
to sort records.

* Before you modify database tables, ensure that the database is not
open for editing. If you try to edit the database while it is open, you
receive the following MATLAB® error:

[Vendor][ODBC Driver] The database engine could not lock
table 'TableName' because it is already in use by
another person or process.

7-35



exec

7-36

¢ For Microsoft® Excel®, tables in sqlquery are Excel® worksheets.

By default, some worksheet names include $. To select data from a
worksheet with this name format, use a SQL statement of the form:
select * from "Sheet1$" (or 'Sheet1$').

You may experience issues with text field formats in the Microsoft®
SQL Server™ database management system. Workarounds for these
issues include:

= Converting fields of format NVARCHAR, TEXT, NTEXT, and VARCHAR
to CHARin the database.

= Usingsqlquery to convert data to VARCHAR. For example, run a
sqlquery statement of the form 'select convert(varchar(20),
field1) from tablet'

The PostgreSQL database management system supports
multidimensional fields, but SQL select statements fail when
retrieving these fields unless you specify an index.

Some databases require that you include a symbol, such as #, before
and after a date in a query. For example:

curs = exec(conn, 'select * from mydb where mydate > #03/05/2005#')



exec

Examples

Example 1 — Select Data from a Database Table

Select data from the customers table that you access using the database
connection conn. Assign the returned cursor object to the variable curs.

curs = exec(conn, 'select * from customers')
curs =
Attributes: []
Data: O
DatabaseObject: [1x1 database]
RowLimit: O
SQLQuery: 'select * from customers'
Message: []
Type: 'Database Cursor Object'
ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]
Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]
Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
Fetch: 0

Example 2 — Select One Column of Data from Database
Table

Select country data from the customers table that you access using the
database connection conn. Assign the SQL statement to the variable
sqlquery and assign the returned cursor to the variable curs.

sqlquery = 'select country from customers';
curs = exec(conn, sqlquery);

Example 3 — Use a Variable in a Query

1 Select data from the customers table that you access using the
database connection conn, where country is a variable. In this
example, you are prompted to specify your country. Your input is
assigned to the variable UserCountry.

UserCountry = input('Enter your country: ', 's'")

7-37



exec

7-38

2 You are prompted as follows:

Enter your country:

Enter:

Mexico

3 To perform the query using your input, run:

curs = exec(conn, ...
['select * from customers where country= ' '''' UserCountry ''''])
curs=fetch(curs)

The select statement is created by using square brackets to
concatenate the two strings select * from customers where
country =and 'UserCountry'. The pairs of four quotation marks
are needed to create the pair of single quotation marks that appears
in the SQL statement around UserCountry. The outer two marks
delineate the next string to concatenate, and two marks are required
inside them to denote a quotation mark inside a string.

Tip Without using a variable, the function to retrieve the data would
be:

curs = exec(conn, ['select * from customers where country = '...
' 'Mexico''])
curs=fetch(curs)

Example 4 — Roll Back or Commit Data Exported to
Database Table

Use exec to roll back or commit data after running a fastinsert,
insert, or update for which the AutoCommit flag is off.

e To roll back data for the database connection conn.



exec

exec(conn, 'rollback')

® To commit the data, run:

exec(conn, 'commit');

Example 5 — Change Database Connection Catalog

Change the catalog for the database connection conn to intlprice.

curs = exec(conn,'Use intlprice');

Example 6 — Create a Table and Add a New Column

This example creates a table and adds a new column to it.

1 Use the SQL CREATE command to create the table.

mktab = 'CREATE TABLE Person(LastName varchar,
FirstName varchar,Address varchar,Age int)'

2 Create the table for the database connection object conn.

exec(conn, mktab);

3 Use the SQL ALTER command to add a new column, City, to the table.

a = exec(conn,
"ALTER TABLE Person ADD City varchar(30)"')

Example 7 — Run a Simple Stored Procedure

¢ Execute the stored procedure sp_customer_list for the database
connection conn.

curs = exec(conn, 'sp_customer_list');

7-39



exec

¢ Run a stored procedure with input parameters.

curs = exec(conn,'{call sp_name (parmi,parm2,...)}');

Example 8 — Return a Cursor Object Using a Stored
Procedure

The following example calls a database stored procedure that returns
a cursor object.

1 Specify data to return as a structure.

setdbprefs('DataReturnFormat', 'structure');

2 Define a stored procedure.

ssql_cmd1 = '{?= call get_int_by_id(1,1,
to_date('07/02/05', '"MM/DD/YY"'), ...
to_date('07/07/05', '"MM/DD/YY"'))}";

3 Execute the stored procedure and open a cursor object.

curs = exec(conn, ssql_cmd1)
curs =
Attributes: []
Data: O
DatabaseObject: [1x1 database]
RowLimit: O
SQLQuery: [1x97 char]
Message: []
Type: 'Database Cursor Object'’
ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]
Cursor: ...
[1x1 com.mathworks.toolbox.database.sqlExec]
Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
Fetch: O

7-40



exec

4 Import data from the cursor to a MATLAB variable, a.

a = fetch(curs);

5 View a.Data.

a.Data
ans =
TS_DT: {'2005-07-02 00:00:00.0'}
INT_VALUE: 1

6 Define another stored procedure.
sql _cmd2='{?= call nrg.ts_get_int_ by id(1,1,...

to_date(''07/02/05"' ",  "MM/DD/YY'"),...
to_date(''07/20/05"'',"' '"MM/DD/YY"'"'))}"';

7 Repeat steps 1 through 5 using this new stored procedure.

curs = exec(conn, ssql_cmd2)
curs

Attributes: []
Data: O
DatabaseObject: [1x1 database]
RowLimit: O
SQLQuery: [1x97 char]
Message: []
Type: 'Database Cursor Object'’
ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]
Cursor: ...
[1x1 com.mathworks.toolbox.database.sqlExec]
Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
Fetch: O

Q
1}

fetch(curs)

Attributes: []
Data: [1x1 struct]

7-41



exec

DatabaseObject: [1x1 database]
RowLimit: O
SQLQuery: [1x97 char]
Message: []
Type: 'Database Cursor Object'
ResultSet: ...
[1x1 sun.jdbc.odbc.JdbcOdbcResultSet]
Cursor:
[1x1 com.mathworks.toolbox.database.sqlExec]
Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
Fetch:
[1x1 com.mathworks.toolbox.database.fetchTheData]
a.Data
ans =
TS_DT: {2x1 cell}
INT_VALUE: [2x1 double]

8 Examine the attributes of a.

a.Data.TS_DT
ans =
'2005-07-02 00:00:00.0"
'2005-07-10 00:00:00.0"
a.Data.INT_VALUE
ans

o = 1

See Also close, cursor.fetch, database, database.fetch, fastinsert, fetch,
procedures, querybuilder, querytimeout, resultset, rsmd, set,
update, Chapter 4, “Using Visual Query Builder”, “Data Retrieval
Restrictions” on page 1-6

7-42



exportedkeys

Purpose Retrieve information about exported foreign keys
Syntax e = exportedkeys(dbmeta, 'cata', 'sch'
e = exportedkeys(dbmeta, 'cata', 'sch', 'tab')
Descripl‘ion ® ¢ = exportedkeys(dbmeta, 'cata', 'sch' returns foreign
exported key information (that is, information about primary keys
that are referenced by other tables) for:
= The schema sch
= Of the catalog cata
= For the database whose database metadata object is dbmeta
® ¢ = exportedkeys(dbmeta, 'cata', 'sch', 'tab') returns
exported foreign key information (that is, information about the
primary key which is referenced by other tables), for:
= The table tab
= In the schema sch
= Of the catalog cata
= For the database whose database metadata object is dbmeta
Examples Get foreign exported key information for the schema SCOTT for the

database metadata object dbmeta.

e = exportedkeys(dbmeta, 'orcl', 'SCOTT")
e:
Columns 1 through 7
‘orcl' 'SCOTT! 'DEPT' 'DEPTNO' ‘orcl’
'SCOTT' "EMP'
Columns 8 through 13
'DEPTNO' 1! ‘null’ 1! "FK_DEPTNO'...
'PK_DEPT'

The results show the foreign exported key information.

7-43



exportedkeys

Column| Description Value

1 Catalog containing primary key that is null
exported

2 Schema containing primary key that is SCOTT
exported

3 Table containing primary key that is DEPT
exported

4 Column name of primary key that is DEPTNO
exported

5 Catalog that has foreign key null

6 Schema that has foreign key SCOTT

7 Table that has foreign key EMP

8 Foreign key column name, that is the DEPTNO

column name that references the primary
key in another table

9 Sequence number within the foreign key 1
10 Update rule, that is, what happens to the null
foreign key when the primary key updates
11 Delete rule, that is, what happens to the 1
foreign key when the primary key is deleted
12 Foreign key name FK_DEPTNO
13 Primary key name that is referenced by PK_DEPT

foreign key

In the schema SCOTT, only one primary key is exported to (referenced by)
another table. DEPTNO, the primary key of the table DEPT, is referenced
by the field DEPTNO in the table EMP. The referenced table is DEPT and
the referencing table is EMP. In the DEPT table, DEPTNO is an exported
key. Reciprocally, the DEPTNO field in the table EMP is an imported key.

7-44



exportedkeys

For a description of codes for update and delete rules, see the
getExportedKeys property on the Sun™ Java™ Web site at
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/
DatabaseMetaData.html.

See Also crossreference, dmd, get, importedkeys, primarykeys

7-45


http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

fastinsert

Purpose

GUI
Alternatives

Syntax

Description

Remarks

7-46

Add MATLAB® data to database table

Export data using Visual Query Builder with Data operation set to
Insert. For more information on Visual Query Builder, see Chapter
4, “Using Visual Query Builder”.

fastinsert(conn, ‘'tablename', colnames, exdata)

fastinsert(conn, 'tablename', colnames, exdata) exports
records from the MATLAB variable exdata into new rows in an existing
database table tablename via the connection conn. The variable exdata
can be a cell array, numeric matrix, or structure. You do not specify
the type of data you are exporting; the data is exported in its current
MATLAB format. Specify column names for tablename as strings in the
MATLAB cell array colnames. If exdata is a structure, field names in
the structure must exactly match colnames.

The status of the AutoCommit flag determines whether fastinsert
automatically commits the data to the database. Use get to view the
AutoCommit flag status for the connection and use set to change it. Use
commit or issue an SQL commit statement using exec to commit the
data to the database. Use rollback or issue an SQL rollback statement
using exec to roll back the data.

Useupdate to replace existing data in a database.

® The fastinsert function replaces the insert function. The two
functions have the same syntax, but fastinsert provides better
performance and supports more object types thaninsert . If
fastinsert does not work as expected, try running insert.

¢ If an error message like the following appears when you
runfastinsert, the table may be open in edit mode.

[Vendor][ODBC Product Driver] The database engine could
not lock table 'TableName' because it is already in use
by another person or process.



fastinsert

In this case, close the table in the database and rerun the fastinsert
function.

® The order of records in your database is not constant. Use values in
column names to identify records.

Examples Example 1 — Insert a Record

1 Insert a record consisting of two columns, City and Avg_Temp, into
the Temperatures table. City is San Diego and Avg_Temp is 88
degrees. The database connection is conn. Assign the data to the

cell array exdata.
exdata = {'San Diego', 88}
2 Create a cell array containing the column names in Temperatures.
colnames = {'City', 'Avg_Temp'}
3 Insert the data into the database.

fastinsert(conn, 'Temperatures', colnames, exdata)

The row of data is added to the Temperatures table.

Example 2 — Insert Multiple Records

Insert a cell array, exdata, that contains multiple rows of data and
three columns, Date, Avg_Length, and Avg_Wt, into the Growth table.
The database connection is conn.

Insert the data.

fastinsert(conn, 'Growth',
{'Date';'Avg_Length';'Avg _Wt'}, exdata)

The records are inserted into the table.

7-47



fastinsert

Example 3 — Import Records, Perform Calculations, and
Export Data

Import data from a database into the MATLAB workspace, perform
calculations on it, and then export the results to a database.

1 Import all data from the products table into a cell array.

conn = database('SampleDB', '‘', '');

curs = exec(conn, 'select * from products');
setdbprefs('DataReturnFormat', 'cellarray')
curs = fetch(curs);

2 Assign the first column of data to the variable prod_name.

prod_name = curs.Data(:,1);

3 Assign the sixth column of data to the variable price.
price = curs.Data(:,6);

4 Convert the cell array price to a numeric format, and calculate off
25% of the price. Assign the result of the calculation to the variable
new_price.

new_price =.75*[price{:}]

5 Export prod_name, price, and new_price to the Sale table. Because
prod_name is a character array and price is numeric, you must
export the data as a cell array. To do so, convert new_price from a
numeric array back to a cell array. To convert the columns of data in
new_price to a cell array, run:

new_price = num2cell(new_price);
6 Create an array, exdata, that contains the three columns of data

to export. Put prod_name in column 1, price in column 2, and
new_price in column 3.

7-48



fastinsert

exdata(:,1) = prod_name(:,1);
exdata(:,2) = price;
exdata(:,3) new_price;

7 Assign the column names to a string array, colnames.
colnames={'product_name', 'price', 'sale_price'};
8 Export the data to the Sale table.

fastinsert(conn, 'Sale', colnames, exdata)

All rows of data are inserted into the Sale table.

Example 4 — Insert Numeric Data

Export tax_rate, a numeric matrix consisting of two columns, into
the Tax table.

fastinsert(conn, 'Tax', {'rate','max_value'}, tax_rate)

Example 5 — Insert and Commit Data

1 Use the SQL commit function to commit data to a database after it
has been inserted. The AutoCommit flag is off.

Insert the cell array exdata into the column names colnames of the
Error_Rate table.

fastinsert(conn, 'Error_Rate', colnames, exdata)

2 Alternatively, commit the data using a SQL commit statement with
the exec function.

cursor = exec(conn,'commit');

7-49



fastinsert

Example 6 — Insert BOOLEAN Data

1 Insert BOOLEAN data (which is represented as MATLAB type logical)
into a database.

conn = database('SampleDB', '‘', '');
P.ProductName{1}="'Chocolate Truffles';
P.Discontinued{1}=1logical(0);
fastinsert(conn, 'Products’',...
{'ProductName'; '‘Discontinued'}, P)

2 View the new record in the database to verify that the Discontinued

field is BOOLEAN. In some databases, the MATLAB logical value 0 is
shown as a BOOLEAN false, No, or a cleared check box.

See Also commit, database, exec, insert, logical, querybuilder, rollback,
set, update, Chapter 4, “Using Visual Query Builder”

7-50



fetch

Purpose

About

fetch,
cursor.fetch,
and
database.fetch

cursor.fetch or database.fetch

There are two fetch functions in this toolbox, cursor.fetch and
database.fetch. The fetch function runs one of these functions,
depending on what object you provide to it as an argument. Use
the syntax fetch with the appropriate object argument rather than
explicitly specifying cursor.fetch or database.fetch.

For example, cursor.fetch runs when you pass a cursor object, curs,
to fetch as an argument.

conn=database(...)
curs=exec(conn, sqlquery)
fetch(curs)

The database.fetch function runs when you pass a database object,
conn, to fetch as an argument.

conn=database(...)
fetch(conn, sqlquery)

In this example, the results are effectively identical. database.fetch
runs exec and returns results to the cursor object. It then runs
cursor.fetch, returns results, and closes the cursor object. This shows
that you can use a single call to the database.fetch function to get the
same results as if you had called two functions, exec and cursor.fetch.

cursor.fetch returns a cursor object on which you can run many
other functions, such as get and rows. For this reason, cursor.fetch
is recommended for use in most situations. To import data into the
MATLAB® workspace without meta information about the data, use
database.fetch instead of cursor.fetch.

Throughout the documentation, references to fetch denote
cursor.fetch unless explicitly stated otherwise.

Explicitly specify database.fetch or cursor.fetch only when
running help or doc. To get help for database.fetch, run help

7-51



fetch

database.fetch. Similarly, to view the reference pages for either
version of fetch, run doc database.fetch or doc cursor.fetch.

See Also cursor.fetch, database, database.fetch, exec

7-52



fetchmulti

Purpose
Syntax

Description

Examples

Import data from multiple resultsets

curs = fetchmulti(curs)

curs = fetchmulti(curs) imports data from the open SQL cursor
object curs into the object curs, where the open SQL cursor object
contains multiple resultsets.

Multiple resultsets are retrieved via exec with a sqlquery statement
that runs a stored procedure consisting of two select statements.

cursmulti.Data contains data from each resultset associated with
cursmulti.Statement. cursmulti.Data is a cell array consisting of cell
arrays, structures, or numeric matrices as specified in setdbprefs; the
data type is the same for all resultsets.

Use exec to run a stored procedure that includes multiple select
statements and fetchmulti to retrieve the resulting multiple resultsets.

conn = database(...)
setdbprefs('DataReturnFormat', 'cellarray')
curs = exec(conn, '{call sp_1}');
curs = fetchmulti(curs)
Attributes: []
Data: {{10x1 cell} {12x4 cell}}
DatabaseObject: [1x1 database]
RowLimit: O
SQLQuery: '{call sp_1}"'
Message: []
Type: 'Database Cursor Object'
ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]
[1x1 sun.jdbc.odbc.JdbcOdbcResultSet]
Cursor: ...
[1x1 com.mathworks.toolbox.database.sqlExec]
Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
[1x1 sun.jdbc.odbc.JdbcOdbcStatement]
Fetch:
[1x1 com.mathworks.toolbox.database.fetchTheData]

7-53



fetchmulti

See Also cursor.fetch, database, exec, setdbprefs

7-54



get

Purpose

Syntax

Description

Retrieve object properties

<

get(object)
get(object, 'property')

.property

v = get(object) returns a structure that contains object and its
corresponding properties, and assigns the structure to v.

v = get(object, 'property') retrieves the value of property for
object and assigns the value to v.

v.property returns the value of property after you have created
v by running get.

Use set(object) to view a list of writable properties for object.

Allowable objects include:

“Database Connection Objects” on page 7-57, which are created using
database

“Cursor Objects” on page 7-58, which are created using exec or fetch
(cursor.fetch)

“Driver Objects” on page 7-59, which are created using driver

“Database Metadata Objects” on page 7-59, which are created using
dmd

“Drivermanager Objects” on page 7-60, which are created using
drivermanager

“Resultset Objects” on page 7-60, which are created using resultset

“Resultset Metadata Objects” on page 7-61, which are created using
rsmd

If you call these objects from applications that use Sun™ Java™, you
can get more information about object properties from the Java Web site

7-55



get

at http://java.sun.com/j2se/1.4.2/docs/api/java/sql/
DatabaseMetaData.html.

7-56


http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

get

Database Connection Objects

Allowable property names and returned values for database connection
objects appear in the following table.

Property Value

'"AutoCommit' Status of the AutoCommit flag. It is either on or off,
as specified by set

'Catalog' Name of the catalog in the data source. You may need
to extract a single catalog name from 'Catalog' for
functions such as columns, which accept only a single
catalog.

'‘Driver' Driver used for a JDBC connection, as specified by
database

'"Handle' Identifies a JDBC connection object

'Instance' Name of the data source for an ODBC connection or
the name of a database for a JDBC connection, as
specified by database

'Message' Error message returned by database

'ReadOnly' 1 if the database is read-only; 0 if the database is
writable

'TimeOQut' Value for LoginTimeout

'TransactionIsolation'

Value of current transaction isolation mode

'Type' Object type, specifically Database Object

"URL' For JDBC connections only, the JDBC URL
objectjdbc:subprotocol:subname, as specified by
database

'UserName' User name required to connect to a given database,
as specified by database

'Warnings' Warnings returned by database

7-57



get

Cursor Obijects

Allowable property names and returned values for cursor objects appear
in the following table.

Property Value

'"Attributes’ Cursor attributes. This field is always
empty. Use the attr function to retrieve
cursor attributes.

'Data’ Data in the cursor object data element (the
query results)

'DatabaseObject’ Information about a given database object

'"RowLimit' Maximum number of rows returned by
fetch, as specified by set

'SQLQuery' SQL statement for a cursor, as specified by
exec

'Message' Error message returned from exec or fetch

'Type' Object type, specifically Database Cursor
Object

'ResultSet! Resultset object identifier

'Cursor' Cursor object identifier

'Statement' Statement object identifier

Note If you specify a value (in seconds) for
the timeout argument, queries time out
after the time exceeds the given value.

'Fetch' 0 for cursor created using exec;
fetchTheData for cursor created using
fetch

7-58



get

Driver Obijects

Allowable property names and examples of values for driver objects

appear in the following table.

Property Example of Value
‘MajorVersion' 1
‘MinorVersion' 1001

Database Metadata Objects

Database metadata objects have many properties. Some allowable
property names and examples of their values appear in the following

table.
Property Example of Value
'Catalogs'’ {4x1 cell}
'DatabaseProductName’ "ACCESS'
'DatabaseProductVersion'| '03.50.0000'

‘DriverName'’ 'JDBC-0ODBC Bridge (odbcjt32.dll)'
‘MaxColumnNamelLength' 64

‘MaxColumnsInOrderBy' 10

"URL' "jdbc:odbc:dbtoolboxdemo
‘NullsAreSortedLow' 1

7-59



get

7-60

Drivermanager Objects

Allowable property names and examples of values for drivermanager
objects appear in the following table.

Property Example of Value

‘Drivers' {'oracle.jdbc.driver.OracleDriver@1d8e09ef'
[1x37 char]}

"LoginTimeout' | O

‘LogStream' [1]

Resultset Objects

Allowable property names and examples of values for resultset objects
appear in the following table.

Property Example of Value
‘CursorName'’ {'SQL_CUR92535700x "

'SQL_CUR92535700x ' }
'MetaData' {1x2 cell}
'Warnings' {[1 [1}




get

Resultset Metadata Obijects

Allowable property names and examples of values for a resultset
metadata objects appear in the following table.

Property Example of Value
'CatalogName' {'" '}

‘ColumnCount' 2

‘ColumnName'’ {'Calc_Date' 'Avg Cost'}
‘ColumnTypeName' {'TEXT' 'LONG'}
'TableName' {"" "'}

'isNullable' {11 [11}

'isReadOnly' {[0] [O]}

The empty strings for CatalogName and TableName indicate that
databases do not return these values.

For command-line help on get, use the overloaded methods:

help cursor/get

help database/get

help dmd/get

help driver/get

help drivermanager/get
help resultset/get
help rsmd/get

Examples Example 1 — Get Connection Property and Data Source
Name

Connect to the database SampleDB, and then get the name of the data
source for the connection and assign it to v.

conn = database('SampleDB', '', '');
v = get(conn, 'Instance')

7-61



get

Example 2 — Get Connection Property and AutoCommit Flag
Status

Check the status of the AutoCommit flag for the database connection
conn.

get(conn, 'AutoCommit')
ans =

on

Example 3 — Display Data in Cursor

Display data in the cursor object curs by running:

get(curs, 'Data')

or:
curs.Data
ans =
'Germany'
‘Mexico'
'France'’
‘Canada’

7-62



get

Example 4 — Get Database Metadata Object Properties

1 View the properties of the database metadata object for connection
conn; due to space constraints, only a portion of the returned data
appears here.

dbmeta = dmd(conn);
v get(dbmeta)
Vv

AllProceduresAreCallable:
AllTablesAreSelectable:
DataDefinitionCausesTransaction:
DataDefinitionIgnoredInTransact:
DoesMaxRowSizeIncludeBlobs:
Catalogs:

NullPlusNonNullIsNull:
NullsAreSortedAtEnd:
NullsAreSortedAtStart:
NullsAreSortedHigh:
NullsAreSortedLow:
UsesLocalFilePerTable:
UsesLocalFiles:

4x1 cell}

- O -2 0O 0 0O0OM~M00 = = =2

2 To view names of the catalogs in the database, run:

v.Catalogs

ans =
'D:\matlab\toolbox\database\dbdemos\db1'
'D:\matlab\toolbox\database\dbdemos\origtutorial'
'D:\matlab\toolbox\database\dbdemos\tutorial'
'D:\matlab\toolbox\database\dbdemos\tutoriali"

See Also columns, cursor.fetch, database, dmd, driver, drivermanager, exec,
getdatasources, resultset, rows, rsmd, set

7-63



getdatasources

7-64

Purpose
Syntax

Description

Examples

See Also

Return names of ODBC and JDBC data sources on system
d = getdatasources

d = getdatasources returns the names of valid ODBC and JDBC data
sources on the system as a cell array d of strings. The function gets
the names of ODBC data sources from the ODBC. INI file located in the
directory returned by running:

myODBCdir = getenv('WINDIR'")

d is empty when the ODBC. INI file is valid, but no data sources are
defined. d equals -1 when the ODBC. INI file cannot be opened.

The function also retrieves the names of data sources that are in the
system registry but not in the ODBC. INI file.

If you do not have write access to myODBCdir, the results of
getdatasources may not include data sources that you recently added.
In this case, specify a temporary, writable, output directory via the
preference TempDirForRegistryOutput. For more information about
this preference, see setdbprefs.

getdatasources gets the names of JDBC data sources from the file
that you define using setdbprefs or the Define JDBC data sources
dialog box.

Get the names of databases on your system.

d
d:

getdatasources
'MS Access Database' ‘SampleDB' ‘dbtoolboxdemo’

database, get, setdbprefs



importedkeys
|

Purpose Return information about imported foreign keys
Syntax i = importedkeys(dbmeta, 'cata', 'sch')
i = importedkeys(dbmeta, 'cata', 'sch', 'tab')

Descripl‘ion e i = importedkeys(dbmeta, 'cata', 'sch') returns foreign
imported key information, that is, information about fields that
reference primary keys in other tables, in:

= The schema sch
= Of the catalog cata
= For the database whose database metadata object is dbmeta

® i = importedkeys(dbmeta, 'cata', 'sch', 'tab') returns
foreign imported key information, that is, information about fields
in The table tab. In turn, fields in tab reference primary keys in
other tables in:

= The schema sch
= Of the catalog cata

= For the database whose database metadata object is dbmeta

Examples Get foreign key information for the schema SCOTT in the catalog orcl,
for dbmeta.
i = importedkeys(dbmeta, 'orcl', 'SCOTT')
i=
Columns 1 through 7
‘orcl' 'SCOTT! 'DEPT' 'DEPTNO' ‘orcl’
'SCOTT' "EMP
Columns 8 through 13
'DEPTNO' 1! ‘null’ 1! "FK_DEPTNO'...
'PK_DEPT'

The results show foreign imported key information as described in the
following table.

7-65



importedkeys

Column | Description Value

1 Catalog containing primary key, referenced | orcl
by foreign imported key

2 Schema containing primary key, referenced | SCOTT
by foreign imported key

3 Table containing primary key, referenced by | DEPT
foreign imported key

4 Column name of primary key, referenced by | DEPTNO
foreign imported key

5 Catalog that has foreign imported key orcl

6 Schema that has foreign imported key SCOTT

7 Table that has foreign imported key EMP

8 Foreign key column name, that is the column | DEPTNO
name that references the primary key in
another table

9 Sequence number within foreign key 1

10 Update rule, that is, what happens to the null
foreign key when the primary key updates

11 Delete rule, that is, what happens to the 1
foreign key when the primary key is deleted

12 Foreign imported key name FK_DEPTNO

13 Primary key name in referenced table PK_DEPT

In the schema SCOTT, there is only one foreign imported key. The table
EMP contains a field, DEPTNO, that references the primary key in the
DEPT table, the DEPTNO field.

EMP is the referencing table and DEPT is the referenced table.

DEPTNO is a foreign imported key in the EMP table. Reciprocally, the
DEPTNO field in the table DEPT is an exported foreign key and the
primary key.

7-66



importedkeys
|

For a description of the codes for update and delete rules, see
the getImportedKeys property on the Sun™ Java™ Web site at
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/
DatabaseMetaData.html.

See Also crossreference, dmd, exportedkeys, get, primarykeys

7-67


http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

indexinfo

Purpose Return indices and statistics for database tables
Syntax x = indexinfo(dbmeta, 'cata', 'sch', 'tab')
Description X = indexinfo(dbmeta, 'cata', 'sch', 'tab') returns indices and
statistics for:
® The table tab
® In the schema sch
e Of the catalog cata
¢ for the database whose database metadata object is dbmeta
Examples Get index and statistics information for the table DEPT in the schema
SCOTT of the catalog orcl, for dbmeta.
X = indexinfo(dbmeta,'', 'SCOTT', 'DEPT"')
X =
Columns 1 through 8
‘orcl' 'SCOTT' 'DEPT' ‘0" 'null’ ‘null’ ‘0! ‘0!
‘orcl' "SCOTT! 'DEPT' ‘0’ ‘null’ "PK_DEPT' '1' 1!
Columns 9 through 13
‘null’ ‘'null' ‘4’ 1" 'null’
'DEPTNO' ‘'null’ ‘4’ 1" 'null’

The results contain two rows, meaning there are two index columns.
The statistics for the first index column appear in the following table.

Column | Description Value
1 Catalog orcl
2 Schema SCOTT

7-68



indexinfo

See Also

Column | Description Value
3 Table DEPT
4 Non-unique: 0 if index values can be | 0
non-unique, 1 otherwise
5 Index catalog null
6 Index name null
7 Index type 0
8 Column sequence number within 0
index
9 Column name null
10 Column sort sequence null
11 Number of rows in the index table or | 4
number of unique values in the index
12 Number of pages used for the table or | 1
number of pages used for the current
index
13 Filter condition null

For more information about the index information, see the
getIndexInfo property on the Sun™ Java™ Web site at
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/
DatabaseMetaData.html.

dmd, get, tables

7-69


http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

insert

7-70

Purpose

Syntax

Description

See Also

Add MATLAB® data to database tables (deprecated; use fastinsert
instead)

insert(conn, 'tab', colnames, exdata)

insert(conn, 'tab', colnames, exdata)

Thefastinsert function has replaced the insert function. fastinsert
offers improved performance and supports more data types thaninsert.

Use insert if fastinsert does not work as expected, especially if you
have used insert successfully in the past.

The insert function uses the same syntax as fastinsert; for details,
see fastinsert.

commit, fastinsert, querybuilder, rollback



isconnection

Purpose
Syntax

Description

Examples

See Also

Detect whether database connections are valid

a = isconnection(conn)

a isconnection(conn) returns 1 if the database connection conn
is valid, or returns 0 otherwise.

Check if the database connection conn is valid.

a
a =

isconnection(conn)

1

database, isreadonly, ping

7-71



isdriver

7-72

Purpose
Syntax

Description

Examples

See Also

Detect whether driver is a valid JDBC driver object
a = isdriver(d)

a = isdriver(d) returns 1ifdis a valid JDBC driver object. It returns
0 otherwise.

Check if d is a valid JDBC driver object.

a
a =

isdriver(d)
1

driver, get, isjdbc, isurl



isjdbc

Purpose
Syntax

Description

Examples

See Also

Detect whether driver is JDBC compliant

a = isjdbc(d)

a = isjdbc(d) returns 1 if the driver object d is JDBC-compliant. It
returns 0 otherwise.

Verify whether the database driver object d is JDBC compliant.
a = isjdbc(d)

a =
1

driver, get, isdriver, isurl

7-73



isnullcolumn

Purpose Detect whether last record read in resultset is NULL
Syntax a = isnullcolumn(rset)
Description a = isnullcolumn(rset) returns 1 if the last record read in the

resultset rset is NULL. It returns 0 otherwise.

Examples Example 1 — Result Is Not NULL

isnullcolumn returns not null.
1 Run:

curs = fetch(curs,1);
rset = resultset(curs);
isnullcolumn(rset)
ans =

0

2 Verify this result.

curs.Data
ans =
[1400]

Example 2 — Result Is NULL

isnullcolumn returns null.

1 Run:

curs = fetch(curs,1);
rset = resultset(curs);
isnullcolumn(rset)
ans =

1

2 Verify this result.

7-74



isnullcolumn

curs.Data
ans =
[NaN]

See Also get, resultset

7-75



isreadonly

7-76

Purpose
Syntax

Description

Examples

See Also

Detect whether database connection is read-only

a = isreadonly(conn)

a isreadonly(conn) returns 1 if the database connection conn is
read-only. It returns 0 otherwise.

Check whether conn is read-only.
a = isreadonly(conn)

The result indicates that the database connection conn is read-only:
a =

Therefore, you cannot run fastinsert, insert, or update functions
on this database.

database, isconnection



isurl

Purpose
Syntax

Description

Examples

See Also

Detect whether database URL is valid
a = isurl('s', d)

a = isurl('s', d) returns 1 if the database URL s for the driver
object d is valid. It returns 0 otherwise.

The URL s is of the form jdbc:odbc:name or name.

Check whether the database URL,
jdbc:odbc:thin:@144.212.123.24:1822: is valid for driver object d.

a
a =

isurl('jdbc:odbc:thin:@144.212.123.24:1822:"', d)
1

This indicates that the database URL is valid for d.

driver, get, isdriver, isjdbc

7-77



logintimeout

7-78

Purpose

Syntax

Description

Set or get time allowed to establish database connection

timeout = logintimeout('driver', time)
timeout = logintimeout (time)

timeout = logintimeout('driver')
timeout = logintimeout

timeout = logintimeout('driver', time) sets the amount of
time, in seconds, for a MATLAB® software session to connect to
a database via a given JDBC driver. Use logintimeout before
running the database function. If the MATLAB software session
cannot connect to the database within the specified time, it stops
trying.

timeout = logintimeout(time) sets the amount of time, in
seconds, allowed for a MATLAB software session to try to connect
to a database via an ODBC connection. Use logintimeout before
running the database function. If the MATLAB software session
cannot connect within the allowed time, it stops trying.

timeout = logintimeout('driver') returns the time, in seconds,
that was previously specified for the JDBC driver. A returned
value of 0 means that the timeout value was not previously set. The
MATLAB software session stops trying to connect to the database if
it is not immediately successful.

timeout = logintimeout returns the time, in seconds, that you
previously specified for an ODBC connection. A returned value of 0
means that the timeout value was not previously set ; the MATLAB
software session stops trying to make a connection if it is not
immediately successful.

Note If you do not specify a value for logintimeout and the MATLAB
software session cannot establish a database connection, your MATLAB
software session may freeze.




logintimeout

Note Apple® Mac OS® platforms do not support logintimeout.

Examples Example 1 — Get Timeout Value for ODBC Connection
View the current connection timeout value.

logintimeout
ans =
0

This indicates that you have not specified a timeout value.

Example 2 — Set Timeout Value for ODBC Connection

Set the timeout value to 5 seconds.

logintimeout(5)
ans =
5

Example 3 — Get and Set Timeout Value for JDBC Connection

1 Check the timeout value for a database connection that is established
using an Oracle® JDBC driver.

logintimeout('oracle.jdbc.driver.OracleDriver"')
ans =
0

This indicates that the timeout value is currently 0.
2 Set the timeout to 5 seconds.

timeout = ...
logintimeout('oracle.jdbc.driver.OracleDriver', 5)
timeout =

5

7-79



logintimeout

3 Verify the timeout value.

logintimeout('oracle.jdbc.driver.OracleDriver"')
ans =
5

See Also database, get, set

7-80



namecolumn

Purpose
Syntax

Description

Examples

See Also

Map resultset column name to resultset column index

X = namecolumn(rset, n)

X

namecolumn(rset, n) maps a resultset column name n to its

resultset column index. rset is the resultset and n is a string or cell
array of strings containing the column names.

1 Get the indices for the column names DNAME and LOC resultset object

rset.

X = namecolumn(rset,
X:

2 3

{'DNAME'; 'LOC'})

The results show that DNAME is column 2 and LOC is column 3.

2 Get the index for only the LOC column.

X = namecolumn(rset,

columnnames, resultset

'LOC")

7-81



ping

Purpose Get status information about database connection

Syntax ping(conn)

Description ping(conn) returns status information about the database connection
conn if the connection is open. It returns an error message otherwise.

Examples Example 1 — Get Status Information About ODBC Connection

Check the status of the ODBC connection conn.

ping(conn)
ans =
DatabaseProductName: 'ACCESS'
DatabaseProductVersion: '03.50.0000'
JDBCDriverName: 'JDBC-ODBC Bridge (odbcjt32.d1l1)'
JDBCDriverVersion: '1.1001 (04.00.4202)'
MaxDatabaseConnections: 64
CurrentUserName: 'admin'
DatabaseURL: 'jdbc:odbc:SampleDB'
AutoCommitTransactions: 'True'

Example 2 — Get Status Information About JDBC Connection
Check the status of the JDBC connection conn.

ping(conn)

ans =
DatabaseProductName: 'Oracle’

DatabaseProductVersion: [1x166 char]

JDBCDriverName: 'Oracle JDBC driver'

JDBCDriverVersion: '7.3.4.0.2'

MaxDatabaseConnections: 0

CurrentUserName: 'scott'

DatabaseURL: 'jdbc:oracle:thin:

@144.212.123.24:1822:0rcl'AutoCommitTransactions: 'True'

7-82



ping

Example 3 — Unsuccessful Request for Information About
Connection

In this example, the database connection conn has been terminated
or is not successful. Run:

ping(conn)
Cannot Ping the Database Connection

See Also database, dmd, get, isconnection, set, supports

7-83



primarykeys

Purpose Get primary key information for database table or schema
Syntax k = primarykeys(dbmeta, 'cata', 'sch')
k = primarykeys(dbmeta, 'cata', 'sch', 'tab')

Description ® k = primarykeys(dbmeta, 'cata', 'sch') returns primary key
information for all tables in:

= The schema sch
= Of the catalog cata
= For the database whose database metadata object is dbmeta

® k = primarykeys(dbmeta, 'cata', 'sch', 'tab') returns
primary key information for:

= The table tab
= In the schema sch
= Of the catalog cata

= For the database whose database metadata object is dbmeta

Examples Get primary key information for the DEPT table in:

® The schema SCOTT
e Of the catalog orcl

® For the database metadata object dbmeta

k = primarykeys(dbmeta, 'orcl','SCOTT', 'DEPT")

‘orcl'’ 'SCOTT' 'DEPT' ‘DEPTNO' 1! '"PK_DEPT'

7-84



primarykeys

See Also

The results show the primary key information as described in the
following table.

Column | Description Value

1 Catalog orcl

2 Schema SCOTT

3 Table DEPT

4 Column name of primary DEPTNO
key

5 Sequence number within 1
primary key

6 Primary key name PK_DEPT

crossreference, dmd, exportedkeys, get, importedkeys

7-85



procedurecolumns

Purpose

Syntax

Description

Examples

7-86

Get stored procedure parameters and result columns of catalogs

pc = procedurecolumns(dbmeta, 'cata', 'sch')
pc = procedurecolumns(dbmeta, 'cata')

® pc = procedurecolumns(dbmeta, 'cata', 'sch') returns the
stored procedure parameters and result columns for:
= The schema sch
= Of the catalog cata
= For the database whose database metadata object is dbmeta

® pc = procedurecolumns(dbmeta, 'cata') returns stored
procedure parameters and result columns for:

= The catalog cata
= For the database whose database metadata object is dbmeta

Running the stored procedure generates results. One row is returned
for each column.

Get stored procedure parameters for:

® The schema ORG
¢ In the catalog tutorial

® For the database metadata object dbmeta.

pc = procedurecolumns(dbmeta, 'tutorial', 'ORG')
pc =
Columns 1 through 7
[1x19 char] 'ORG' ‘display' 'Month' ‘3!
12" 'TEXT'
[1x19 char] 'ORG" ‘display' 'Day’ '3

'4"  '"INTEGER'

Columns 8 through 13



procedurecolumns

'50' ‘50" ‘null’ ‘null’ ‘1! 'null’
'50" ‘4! ‘null’ ‘null’ ‘1! 'null’

The results show stored procedure parameter and result information.
Because two rows of data are returned, there are two columns of data
in the results. The results show that running the stored procedure
display returns the Month and Day columns.

7-87



procedurecolumns

7-88

See Also

Following is a full description of the procedurecolumns results for the

first row (Month).

Column Description Value for First Row
1 Catalog 'D:\orgdatabase\orcl’
2 Schema 'ORG'

3 Procedure name 'display’

4 Column/parameter name | 'MONTH'

5 Column/parameter type '3

6 SQL data type 12!

7 SQL data type name '"TEXT'

8 Precision '50'

9 Length '50'

10 Scale 'null’

11 Radix 'null’

12 Nullable !

13 Remarks 'null’

For more information about the procedurecolumns results, see the
getProcedureColumns property on the Sun™ Java™ Web site at
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/
DatabaseMetaData.html.

dmd, get, procedures


http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

procedures

Purpose

Syntax

Description

Examples

Get stored procedures for catalogs

procedures(dbmeta, 'cata')
procedures(dbmeta, 'cata', 'sch')

T T
I

® p = procedures(dbmeta, 'cata') returns stored procedures in
the catalog cata, for the database whose database metadata object
is dbmeta.

® p = procedures(dbmeta, 'cata', 'sch') returns the stored
procedures in:

= The schema sch
= Of the catalog cata

= For the database whose database metadata object is dbmeta

Stored procedures are SQL statements that are saved with the
database. Use the exec function to run a stored procedure. Specify
the stored procedure as the sqlquery argument instead of explicitly
entering the sqlquery statement as the argument.

1 Get the names of stored procedures for the catalog DBA, for the
database metadata object dbmeta.

p = procedures(dbmeta, 'DBA")

p:
'sp_contacts'
'sp_customer_list'
'sp_customer_products'
'sp_product_info'
'sp_retrieve_contacts'
'sp_sales_order'

a Execute the stored procedure sp_customer_list for the database
connection conn, and fetch all data.

7-89



procedures

7-90

curs = exec(conn, 'sp_customer_list');
curs = fetch(conn)

curs =

Attributes:
Data:
DatabaseObject:
RowLimit:
SQLQuery:
Message:

Type:
ResultSet:
Cursor:

[]
{10x2 cell}

[1x1 database]

0

'sp_customer_list'

[]

'Database Cursor Object'

[1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

[1x1 com.mathworks.toolbox.database.sqlExec]

Statement:
Fetch:

[1x1 sun.jdbc.odbc.JdbcOdbcStatement]

[1x1 com.mathworks.toolbox.database.fetchTheData]

b View the results.

curs.Data

ans =
[101] 'The Power Group'
[102] "AMF Corp.'
[103] '‘Darling Associates'
[104] 'P.S.C."
[105] "Amo & Sons'
[106] 'Ralston Inc.'
[107] 'The Home Club'
[108] 'Raleigh Co.'
[109] "Newton Ent.'
[110] 'The Pep Squad'

See Also dmd, exec, get, procedurecolumns



querybuilder

Purpose Start SQL query builder GUI to import and export data
Syntax querybuilder
Description querybuilder starts Visual Query Builder (VQB), the Database

Toolbox™ GUI.

Examples For more information, including examples, on Visual Query Builder, use
the VQB Help menu or see Chapter 4, “Using Visual Query Builder”.

7-91



querytimeout

Purpose
Syntax

Description

Examples

Limitations

See Also

7-92

Get time specified for SQL queries to succeed
timeout = querytimeout(curs)

timeout = querytimeout (curs) returns the amount of time, in
seconds, allowed for SQL queries of the open cursor curs to succeed. If
a given query cannot complete in the specified time, the toolbox stops
trying to perform the query.

The database administrator defines timeout values. If the timeout
value is zero, queries must complete immediately.

Get the current database timeout setting for curs.
querytimeout (curs)

ans =
10

e If a given database does not have a database timeout feature, it
returns the following:

[Driver]Driver not capable

e ODBC drivers for Microsoft® Access™ and Oracle® do not support
querytimeout.

exec



register

Purpose
Syntax

Description

Examples

See Also

Load database driver
register(d)

register(d) loads the database driver object d. Use unregister to
unload the driver.

Although database automatically loads a driver, register allows you
to use get to view properties of the driver before connecting to the
database. The register function also allows you to run drivermanager
with set and get on properties for loaded drivers.

1 register(d) loads the database driver object d.

2 get(d) returns properties of the driver object.

driver, drivermanager, get, set, unregister

7-93



resultset

7-94

Purpose
Syntax

Description

Examples

See Also

Construct resultset object
rset = resultset(curs)

rset = resultset(curs) creates a resultset object rset for the cursor
curs. To get properties of rset, create a resultset metadata object using
rsmd, or make calls to rset using applications based on Sun™ Java™.

Run clearwarnings, isnullcolumn, and namecolumn on rset. Use
close to close the resultset, which frees up resources.

Construct a resultset object rset.

rset
rset =
Handle: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

resultset(curs)

clearwarnings, close, cursor.fetch, exec, get, isnullcolumn,
namecolumn, rsmd



rollback
|

Purpose Undo database changes
Syntax rollback(conn)
Description rollback(conn) reverses changes made to a database using

fastinsert, insert, or update via the database connection conn. The
rollback function reverses all changes made since the last commit or
rollback operation. To use rollback, the AutoCommit flag for conn
must be off.

Note The rollback function does not roll back data in MySQL®
databases.

Examples 1 Ensure that the AutoCommit flag for connection conn is of f by
running:

get(conn, 'AutoCommit')

ans =
off

2 Insert data contained in exdata into the columns DEPTNO, DNAME, and
LOC, in the table DEPT, for the data source conn.

fastinsert(conn, 'DEPT',
{'DEPTNO'; 'DNAME'; 'LOC'}, exdata)

3 Roll back the data that you inserted into the database by running:

rollback(conn)

The data in exdata is removed from the database. The database now
contains the data it had before you ran the fastinsert function.

See Also commit, database, exec, fastinsert, get, insert, update

7-95



rows

Purpose Return number of rows in fetched data set
Syntax numrows = rows(curs)
Description numrows = rows(curs) returns the number of rows in the fetched

data set curs.

Examples There are four rows in the fetched data set curs.

numrows = rows(curs)

numrows
4

To see the four rows of data in curs, run:

curs.Data
ans =
'Germany'
‘Mexico'
'France'’
‘Canada’
See Also cols, cursor.fetch, get, rsmd

7-96



rsmd

Purpose
Syntax

Description

Examples

See Also

Construct resultset metadata object
rsmeta = rsmd(rset)

rsmeta = rsmd(rset) creates a resultset metadata object rsmeta, for
the resultset object rset. Get properties of rsmeta using get or make
calls to rsmeta using applications that are based on Sun™ Java™.

Create a resultset metadata object rsmeta.

rsmeta=rsmd(rset)
rsmeta =
Handle: [1x1 sun.jdbc.odbc.JdbcOdbcResultSetMetaData]

Use v = get(rsmeta) and v.property to view properties of the
resultset metadata object.

exec, get, resultset

7-97



runstoredprocedure

7-98

Purpose

Syntax

Description

Examples

Call stored procedure with input and output parameters

results = runstoredprocedure(conn, sp_name, parms_in,

types_out)

results = runstoredprocedure(conn, sp_name, parms_in,
types_out) calls a stored procedure with specified input parameters
and returns output parameters, where:

conn is the database connection handle
sp_name is the stored procedure to run

parms_in is a cell array containing the input parameters for the
stored procedure

types_out is the list of data types of the output parameters

Use runstoredprocedure to return the value of a variable to a
MATLAB® variable, which you cannot do when running a stored
procedure via exec. Running a stored procedure via exec returns
resultsets but cannot return output parameters.

These examples illustrate how runstoredprocedure differs from
running stored procedures via exec.

1 The command:

X = runstoredprocedure(c, 'myprocnoparams')

Runs a stored procedure that has no input or output parameters.

2 The command:

X = runstoredprocedure(c, 'myprocinonly', {2500, 'dones'})

Runs a stored procedure given input parameters 2500 and ’Jones’. It
returns no output parameters.



runstoredprocedure

3 The command:

x = runstoredprocedure(c, 'myproc', {2500, 'Jones'},{java.sql.Types.NUMERIC})

Runs the stored procedure myproc given input parameters

2500 and 'Jones'. It returns an output parameter of type
java.sql.Types.NUMERIC, which could be any numeric Sun™
Java™ data type. The output parameter x is the value of a database
variable n. The stored procedure myproc creates this variable, given
the input values 2500 and 'Jones'. For example, myproc computes
n, the number of days when Jones is 2500. It then returns the value
of n to x.

See Also cursor.fetch, exec

7-99



set

Purpose

Syntax

Description

7-100

Set properties for database, cursor, or drivermanager object

set(object, 'property', value)
set(object)

®* set(object, 'property', value) sets the value of property to
value for the specified object.

* set(object) displays all properties for object.

Allowable values for object are:

* “Database Connection Objects” on page 7-101, created using

database

® “Cursor Objects” on page 7-102, created using exec or fetch
(cursor.fetch)

® “Drivermanager Objects” on page 7-102, created using
drivermanager.

You cannot set all of these properties for all databases. You receive an
error message when you try to set a property that the database does
not support.



set

Database Connection Objects

The allowable values for property and value for a database connection
object appear in the following table.

Property

Value

Description

"AutoCommit'

lonl

Database data is written
and automatically committed
when you run fastinsert,
insert, or exec. You cannot
use rollback to reverse this
process.

‘off'

Database data is not
committed automatically
when you run fastinsert,
insert, or update. Use
rollback to reverse this
process. When you are sure
that your data is correct, use
the commitfunction to commit
it to the database.

‘ReadOnly'’

Not read-only; that is,
writable

1

Read-only

'TransactionIsolation'

positive
integer

Current transaction isolation
level

Note For some databases, if you insert data and then close the
database connection without having committed the data to the database,
the data gets committed automatically. Your database administrator
can tell you whether your database behaves this way.

7-101



set

Examples

7-102

Cursor Obijects

The allowable property and value for a cursor object appear in the
following table.

Property Value Description
'"RowLimit' positive Sets the RowLimit for fetch.
integer Specify this property instead of

passing RowLimit as an argument
to the fetch function. When

you define RowLimit forfetch

by using set, fetch behaves
differently depending on what
type of database you are using.

Drivermanager Objects

The allowable property and value for a drivermanager object appear
in the following table.

Property Value Description

'LoginTimeout' positive integer Sets the logintimeout
value for all loaded
database drivers.

For command-line help on set, use the overloaded methods:

help cursor/set
help database/set
help drivermanager/set

Example 1 — Set RowlLimit for Cursor

This example does the following:

e Establishes a JDBC connection to a data source

® Runs fetch to retrieve data from the table EMP,



set

® Sets RowLimit to 5

Run the command:

conn=database('orcl', 'scott', 'tiger',...

‘oracle.jdbc.driver.OracleDriver',...
'jdbc:oracle:thin:@144.212.123.24:1822:");

curs=exec(conn,

'select * from EMP');

set(curs, 'RowLimit', 5)

curs=fetch(curs)

curs =

Attributes:
Data:
DatabaseObject:
RowLimit:
SQLQuery:
Message:
Type:
ResultSet:
Cursor:
Statement:
Fetch:

[1

{5x8 cell}

[1x1 database]

5

‘select * from EMP'

[1

'Database Cursor Object'

[1x1 oracle.jdbc.driver.OracleResultSet]
[1x1 com.mathworks.toolbox.database.sqlExec]
[1x1 oracle.jdbc.driver.OracleStatement]
[1x1 com.mathworks.toolbox.database.fetchTheData]

As displayed above, the RowLimit property of curs is 5 and the Data
property is 5x8 cell, indicating that fetch returned five rows of data.

In this example, RowLimit limits the maximum number of rows you can
retrieve. Therefore, rerunning the fetch function returns no data.

7-103



set

Example 2 — Set the AutoCommit Flag to On

This example shows what happens when you run a database update
function on a database whose AutoCommit flag is set to on.

1 Determine the status of the AutoCommit flag for the database
connection conn.

get(conn, 'AutoCommit')

ans =
off

The flag is off.
2 Set the flag status to on and verify its value.

set(conn, 'AutoCommit', 'on');
get(conn, 'AutoCommit')

ans =
on

3 Insert a cell array exdata into column names colnames in the table
Growth.

fastinsert(conn, 'Growth', colnames, exdata)

The data is inserted and committed to the database.

Example 3 — Set the AutoCommit Flag to Off and Commit
Data

This example shows the results of running fastinsert and commit to
insert and commit data into a database whose AutoCommit flag is off.

1 First set the AutoCommit flag to off for database connection conn.

set(conn, 'AutoCommit', 'off');

7-104



set

2 Insert a cell array exdata into the column names colnames in the
table Avg_Freight_Cost.

fastinsert(conn, 'Avg_Freight_Cost', colnames, exdata)

3 Commit the data to the database.

commit(conn)

Example 4 — Set the AutoCommit Flag to Off and Roll Back
Data

This example runs update to insert data into a database whose
AutoCommit flag is off. It then uses rollback to roll back the data.

1 Set the AutoCommit flag to off for database connection conn.

set(conn, 'AutoCommit', 'off');

2 Update the data in colnames in the table Avg_Freight Weight table,
for the record selected by whereclause, with data from the cell array

exdata.

update(conn, 'Avg_Freight_Weight', colnames, exdata,
whereclause)

3 Roll back the data.
rollback(conn)

The data in the table is now as it was before you ran update.

Example 5 — Set the LoginTimeout for a Drivermanager
Object

1 Create a drivermanager object dm and set its LoginTimeout value to
3 seconds.

7-105



set

dm = drivermanager;
set(dm, 'LoginTimeout',3);

2 Verify this result.

logintimeout
ans =
3

See Also cursor.fetch, database, drivermanager, exec, fastinsert, get,
insert, logintimeout, ping, update

7-106



setdbprefs

Purpose

GUI
Alternatives

Syntax

Description

Set preferences for retrieval format, errors, NULLs, and more

Click Query > Preferences to set database preferences from Visual
Query Builder.

setdbprefs

s = setdbprefs

setdbprefs('property')

setdbprefs('property', 'value')
setdbprefs({'propertyt1'; ...},{'valuet'; ...}
setdbprefs(s)

® setdbprefs returns current values for database preferences.

® s = setdbprefs returns current values for database preferences to
the structure s. You can save s to a MAT-file to use your specified
preferences in future MATLAB® software sessions.

® setdbprefs('property') returns the current value for the specified
property.

® setdbprefs('property', 'value') sets the specified property to
value in the current MATLAB software session. You can include this
statement in a MATLAB startup file to set preferences automatically
when a MATLAB software session starts.

e setdbprefs({'propertyt'; ...},{'valuel'; ...} sets properties
starting with property1 to values starting with valuel, in the
current MATLAB software session.

® setdbprefs(s) sets preferences specified in the structure s to values
that you specify.

Allowable properties appear in the following tables:

¢ DataReturnFormat and ErrorHandling Properties and Values for
setdbprefs on page 7-108

7-107



setdbprefs

¢ Null Data Handling Properties and Values for setdbprefs on page
7-109

® Other Properties and Values for setdbprefs (Not Accessible via Query
> Preferences) on page 7-111

DataReturnFormat and ErrorHandling Properties and Values for setdbprefs

Property Allowable Values | Description

'DataReturnFormat'| 'cellarray' Format for data to import into the MATLAB
(default), workspace. Set the format based on the
'numeric’', or type of data being retrieved, memory
"structure’ considerations, and your preferred method

of working with retrieved data.

‘cellarray' Imports nonnumeric data into MATLAB cell
(default) arrays.
'numeric' Imports data into MATLAB matrix of

doubles. Nonnumeric data types are
considered NULL and appear as specified
in the NullNumberRead property. Use only
when data to retrieve is in numeric format,
or when nonnumeric data to retrieve is not
relevant.

"structure’ Imports data into a MATLAB structure. Use
for all data types. Facilitates working with
returned columns.

7-108



setdbprefs

DataReturnFormat and ErrorHandling Properties and Values for setdbprefs

(Continued)
Property Allowable Values | Description
'"ErrorHandling' "store' (default), Specifies how to handle errors when

'report’', or
"empty’

importing data. Set this parameter before
you run exec.

'store' (default)

Errors from running database are stored in
the Message field of the returned connection
object. Errors from running exec are stored
in the Message field of the returned cursor
object.

‘report'’ Errors from running database or exec
display immediately in the MATLAB
Command Window.

"empty' Errors from running database are stored in

the Message field of the returned connection
object. Errors from running exec are stored
in the Message field of the returned cursor
object. Objects that cannot be created are
returned as empty handles ([ ]).

Null Data Handling Properties and Values for setdbprefs

Property

Allowable Values

Description

"NullNumberRead'

User-specified, for
example, '0'

Specifies how NULL numbers appear after
being imported from a database into the
MATLAB workspace. NaN is the default
value. String values such as 'NULL' cannot
be set if 'DataReturnFormat’ is set to
'numeric'. Set this parameter before
running fetch.

7-109



setdbprefs

Null Data Handling Properties and Values for setdbprefs (Continued)

Property Allowable Values | Description
'"NullNumberWrite'| User-specified, for Numbers in the specified format, for
example, 'NaN' example, NaN appears as NULL after being
exported from the MATLAB workspace to a
database. NaN is the default value.
‘NullStringRead' | User-specified, for Specifies how NULL strings appear after being
example, 'null’ imported from a database into the MATLAB
workspace. NaN is the default value. Set this
parameter before running fetch.
'NullStringWrite'| User-specified, for Strings in the specified format, for example,

example, 'NULL'

NaN, appear as NULL after being exported from
the MATLAB workspace to a database.NaN
is the default value.

7-110



setdbprefs

Other Properties and Values for setdbprefs (Not Accessible via Query >

Preferences)
Allowable
Property Values Description
'JDBCDataSourceFile' User-specified, | Path to MAT-file containing JDBC

for example,
‘D:/file.mat’

data sources. For more information,
see “Accessing Existing JDBC Data
Sources” on page 2-4.

‘UseRegistryForSources'

'yes' (default)
or 'no'

When set to yes, VQB searches the
Microsoft® Windows® registry for ODBC
data sources that are not uncovered in
the system ODBC. INI file. The following
message may appear: Registry
editing has been disabled by your
administrator. This message is
harmless and can safely be ignored.

‘TempDirForRegistryOutput'

User-specified,
for example,
‘D:/work'

Directory where VQB writes ODBC
registry settings when you run
getdatasources. Use when you

add data sources and do not have
write access to the MATLAB current
directory. The default is the Windows
temporary directory, which is returned
by the command getenv('temp')).

If you specify a directory to which you
do not have write access or which does
not exist, the following error appears:

Cannot export
<directory-name>\0DBC.INI:
Error opening the file.
There may be a disk

or file system error.

7-111



setdbprefs

Remarks When you run clear all, setdbprefs values are cleared and returned
to their default values. It is a good practice to set or verify preferences
values before each fetch.

Examples Example 1 — Display Current Values
Run setdbprefs.

setdbprefs
DataReturnFormat: 'cellarray’
ErrorHandling: 'store'
NullNumberRead: 'NaN'
NullNumberWrite: 'NULL'
NullStringRead: 'null’
NullStringWrite: ‘'null'’
JDBCDataSourceFile: '
UseRegistryForSources: 'yes'
TempDirForRegistryOutput: '

These values show that:

® Data is imported from databases into MATLAB cell arrays.

¢ Errors that occur during a database connection or SQL query attempt
are stored in the Message field of the connection or cursor data object.

e Each NULL number in the database is read into the MATLAB
workspace as NaN. Each NaN in the MATLAB workspace is exported
to the database as NULL. Each NULL string in the database is read
into the MATLAB workspace as 'null'. Each 'null’' string in the
MATLAB workspace is exported to the database as a NULL string.

o A MAT-file that specifies the JDBC source file has not been created.

¢ Visual Query Builder looks in the Windows system registry for data
sources that do not appear in the ODBC. INI file.

* No temporary directory for registry settings has been specified.

7-112



setdbprefs

Example 2 — Change a Preference
Run setdbprefs ('NullNumberRead').

setdbprefs ('NullNumberRead')
NullNumberRead: 'NaN’

Each NULL number in the database is read into the MATLAB workspace
as NaN.

Change the value of this preference to 0.

setdbprefs ('NullNumberRead', '0')

Each NULL number in the database is read into the MATLAB workspace
as 0.

Example 3 — Change the DataReturnFormat Preference

1 Specify that database data be imported into MATLAB cell arrays.
setdbprefs ('DataReturnFormat', 'cellarray’')

2 Import data into the MATLAB workspace.
conn = database('SampleDB', '‘', '');
curs=exec(conn,

‘select all ProductName,UnitsInStock fromProducts');
curs=fetch(curs,3);

curs.Data

ans =
'Chai'’ [39]
‘Chang'’ [17]
"Aniseed Syrup' [13]

3 Change the data return format from cellarray to numeric.

setdbprefs ('DataReturnFormat', 'numeric')

7-113



setdbprefs

4 Perform the same import operation as you ran in the cell array
example. Note the format of the returned data.

curs.Data
ans =
NaN 39
NaN 17
NaN 13

In the database, the values for ProductName are character strings,
as seen in the previous example when DataReturnFormat was set to
cellarray. Therefore, the ProductName values cannot be read when
they are imported into the MATLAB workspace using the numeric
format. Therefore, the MATLAB software treats them as NULL
numbers and assigns them the current value for the Nul1NumberRead
property of setdbprefs, NaN.

5 Change the data return format to structure.

setdbprefs ('DataReturnFormat', 'structure')

6 Then perform the same import operation as you ran in the cell array
example.

curs.Data
ans =
ProductName: {3x1 cell}
UnitsInStock: [3x1 double]

7 View the contents of the structure to see the data.

curs.Data.ProductName
ans =

'Chai'’

'Chang’

'Aniseed Syrup'

curs.Data.UnitsInStock

7-114



setdbprefs

ans =
39
17
13

Example 4 — Change the Write Format for NULL Numbers

1 Specify NaN for the NullNumberWrite format.

setdbprefs('NullNumberWrite', 'NaN')

Numbers represented as NaN in the MATLAB workspace are exported
to databases as NULL.

For example, the variable ex_data, contains a NaN.

ex_data =
'09-24-2003"' NaN

2 Insert ex_data into a database using fastinsert. TheNaN data is
exported into the database as NULL.

fastinsert (conn, 'Avg_Freight_Cost', colnames, ex_data)

8 Avg_Freight_Cost: __ [M[=] E3

Calc_Date Awy Cost
09-24-2003

Record: H| 4 || 20k |H |He|

3 Change the value of Nul1NumberWrite to Inf.

setdbprefs('NullNumberWrite', 'Inf")

4 Attempt to insert ex_data. A MATLAB error appears because the
NaN in ex_data cannot be read.

7-115



setdbprefs

fastinsert(conn, 'Avg Freight Cost', colnames, ex_data
??? Error using ==> fastinsert

[Microsoft][ODBC Microsoft Access Driver]

Too few parameters.

Expected 1.

Example 5 — Specify Error Handling Settings

1 Specify the store format for the ErrorHandling preference.

setdbprefs ('ErrorHandling', 'store')

Errors generated from running database or exec are stored in the
Message field of the returned connection or cursor object.

2 Now try to fetch data from a closed cursor by running:.

conn=database('SampleDB', '', '');
curs=exec(conn, 'select all ProductName from Products');

close(curs)

curs=fetch(curs,3);

curs=

Attributes:
Data:
DatabaseObject:
RowLimit:
SQLQuery:
Message:
Type:
ResultSet:
Cursor:
Statement:
Fetch:

[1

0

[1x1 database]

0

'select all ProductName from Products'
'"Error: Invalid cursor'

'Database Cursor Object'

0

0

[1x1 sun.jdbc.odbc.JdbcOdbcStatement]
[1x1 com.mathworks.toolbox.database.fetchTheData]

The error generated by this operation appears in the Message field.

7-116



setdbprefs

3 To specify the report format for the ErrorHandling preference, run:

setdbprefs ('ErrorHandling', 'report')

Errors generated by running database or exec display immediately
in the Command Window.

4 Now try to fetch data from a closed cursor by running:

conn = database('SampleDB', '', '');
curs=exec(conn, 'select all ProductName from Products');
close(curs)

curs=fetch(curs,3);

??? Error using ==> cursor/fetch (errorhandling)

Invalid Cursor

Error in ==>
D:\matlab\toolbox\database\database\@cursor\fetch.m

On line 36 ==> errorhandling(initialCursor.Message);

The error generated by this operation appears immediately in the
Command Window.

5 Specify the empty format for the ErrorHandling preference.

setdbprefs ('ErrorHandling', 'empty"')

Errors generated while running database or exec are stored in the
Message field of the returned connection or cursor object. In addition,
objects that cannot be created are returned as empty handles, [ ].

6 Try to fetch data from a closed cursor.

conn = database('SampleDB', '', '');

curs=exec(conn, 'select all ProductName from Products');
close(curs)

curs=fetch(curs,3);

curs =

7-117



setdbprefs

Attributes: []
Data: []
DatabaseObject: [1x1 database]
RowLimit: O
SQLQuery: 'select all ProductName from Products'
Message: 'Invalid Cursor'
Type: 'Database Cursor Object'
ResultSet: 0
Cursor: 0
Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
Fetch: [1x1 com.mathworks.toolbox.database.fetchTheDatal]

The error appears in the cursor object Message field. Furthermore,

the Attributes field contains empty handles because no attributes
could be created.

7-118



setdbprefs

Example 6 — Change Multiple Settings
Specify that NULL strings are read from the database into a MATLAB
matrix of doubles as 'NaN':

setdbprefs({'NullStringRead'; 'DataReturnFormat'},...
{'NaN'; 'numeric'})

See “Example 8 — Assign Values to a Structure” on page 7-119 for more
information on another way to change multiple settings.

Example 7 — Specify JDBC Data Sources for Use by VQB

Instruct VQB to connect to the database using the data sources specified
in the file myjdbcdatsources.mat.

setdbprefs('JDBCDataSourceFile',...
'D:/Work/myjdbcdatasources.mat')

Example 8 — Assign Values to a Structure

1 Assign values for preferences to fields in the structure s.

.DataReturnFormat = 'numeric';
.NullNumberRead = '0';
.TempDirForRegistryOutput = 'C:\Work'

w nu no on

DataReturnFormat: 'numeric'
NullNumberRead: 'O’
TempDirForRegistryOutput: 'C:\Work'
2 Set preferences using the values in s:
setdbprefs(s)

3 Runsetdbprefs to check your preferences settings:

setdbprefs

7-119



setdbprefs

DataReturnFormat: 'numeric'
ErrorHandling: 'store'
NullNumberRead: 'O’
NullNumberWrite: 'NaN'
NullStringRead: 'null’
NullStringWrite: 'null'’
JDBCDataSourceFile: '
UseRegistryForSources: 'yes'
TempDirForRegistryOutput: 'C:\Work'

Example 9 — Return Values to a Structure

Assign values for all preferences to s by running:

S
S =

setdbprefs

DataReturnFormat: 'cellarray'
ErrorHandling: 'store'
NullNumberRead: 'NaN'
NullNumberWrite: 'NaN'’
NullStringRead: 'null'
NullStringWrite: 'null'’
JDBCDataSourceFile: '
UseRegistryForSources: 'yes'
TempDirForRegistryOutput: ''

Now use the MATLAB tab completion feature when obtaining the value
for a preference. For example, enter:

s.U

Press the Tab key, and then Enter. MATLAB completes the field and
displays the value.

s.UseRegistryForSources

ans =

7-120



setdbprefs
|

yes
Example 10 — Save Preferences

You can save your preferences to a MAT-file to use them in future
MATLAB software sessions. For example, say that you need to reuse
preferences that you set for the Seasonal Smoothing project. Assign the
preferences to the variable SeasonalSmoothing and save them to a
MAT-file SeasonalSmoothingPrefs in your current directory:

SeasonalSmoothing = setdbprefs;
save SeasonalSmoothingPrefs.mat SeasonalSmoothing

At a later time, load the data and restore the preferences:

load SeasonalSmoothingPrefs.mat
setdbprefs(SeasonalSmoothing);

Example 11 — Access Existing JDBC Data Sources

Use the following command to access an existing JDBC data source in
future MATLAB software sessions:

setdbprefs('JDBCDataSourceFile', 'fullpathtomatfile')

For example, to use the data sources in the MAT-file
D:/Work/myjdbcdatasources.mat, run this command in the MATLAB
Command Window:

setdbprefs('JDBCDataSourceFile', ...
'D: /Work/myjdbcdatasources.mat')

Tip Include this statement in a MATLAB startup file to access a
given JDBC data source automatically when your MATLAB software
session starts.

See Also clear, cursor.fetch, getdatasources, “Working with Preferences”
on page 4-6

7-121



sql2native

Purpose
Syntax

Description

7-122

Convert JDBC SQL grammar to SQL grammar native to system

>
1}

sql2native(conn, 'sqlquery')

n sql2native(conn, 'sqlquery'), converts the SQL statement
string sqlquery from JDBC SQL grammar into the database system’s
native SQL grammar for the connection conn. The native SQL
statement is assigned to n.



supports

Purpose

Syntax

Description

Examples

See Also

Detect whether property is supported by database metadata object

a = supports(dbmeta)
= supports(dbmeta, 'property')
a.property

QO

® a = supports(dbmeta) returns a structure that contains the
properties of dbmeta and its property values, 1 or 0. A value of 1
indicates that the property is supported, and 0 indicates that the
property is not supported.

® a = supports(dbmeta, 'property') returns 1 or O for the
property field of dbmeta. A value of 1 indicates that the property is
supported, and 0 indicates that the property is not supported.

® a.property returns the value of property after you have created
a using the supports function.

1 Check if dbmeta supports group-by clauses.
a = supports(dbmeta, 'GroupBy')
a =
1
2 View the value of all properties of dbmeta.

a = supports(dbmeta)

The returned result is a list of properties and their values.
3 See the value of the GroupBy property by running:
a.GroupBy

a =
1

database, dmd, get, ping

7-123



tableprivileges

Purpose

Syntax

Description

Examples

See Also

7-124

Return database table privileges

tp = tableprivileges(dbmeta, 'cata')
tp = tableprivileges(dbmeta, 'cata', 'sch')
tp = tableprivileges(dbmeta, 'cata', 'sch', 'tab')

tp = tableprivileges(dbmeta, 'cata') returns a list of table
privileges for all tables in the catalog cata, for the database whose
database metadata object is dbmeta.

® tp = tableprivileges(dbmeta, 'cata', 'sch') returns a list of
table privileges for all tables in:

= The schema sch
= Of the catalog cata
= For the database whose database metadata object is dbmeta

® tp = tableprivileges(dbmeta, 'cata', 'sch', 'tab') returns
a list of privileges for:

= The table tab

= The schema sch

= Of the catalog cata

= For the database whose database metadata object is dbmeta

Get table privileges for the builds table in the schema geck for the
catalog msdb, for the database metadata object dbmeta.

tp = tableprivileges(dbmeta, 'msdb', 'geck', 'builds')
tp =

'DELETE' "INSERT' "REFERENCES"

"SELECT' 'UPDATE"'

dmd, get, tables



tables

Purpose Return database table names

Syntax t = tables(dbmeta, 'cata')

t = tables(dbmeta, 'cata', 'sch')

Descripl‘ion ® t = tables(dbmeta, 'cata') returns a list of tables and table
types in the catalog cata, for the database whose database metadata
object is dbmeta.

® t = tables(dbmeta, 'cata', 'sch') returns a list of tables and
table types in:
= The schema sch
= Of the catalog cata
= For the database whose database metadata object is dbmeta

Tip For command-line help on tables, use the overloaded method:
help dmd/tables

Examples Get the table names and types for the schema SCOTT in the catalog

orcl, for the database metadata object dbmeta.

t = tables(dbmeta, 'orcl', 'SCOTT')

‘t =
'"BONUS'' 'TABLE'
'DEPT' 'TABLE'
"EMP 'TABLE'
'SALGRADE' 'TABLE'
'TRIAL' 'TABLE'

See Also attr, bestrowid, dmd, get, indexinfo, tableprivileges

7-125



unregister

Purpose Unload database driver
Syntax unregister(d)
Descripl‘ion unregister(d) unloads the database driver object d, freeing up system

resources. If you do not unload a registered driver, it automatically
unloads when you end your MATLAB® software session.

Examples unregister(d) unloads the database driver object d.

See Also register

7-126



update

Purpose

Syntax

Description

Remarks

Replace data in database table with MATLAB® data

update(conn, 'tab', colnames, exdata, 'whereclause')

update(conn, 'tab', colnames, ...

{datA,datAA,...; datB,datBB,...; datn,datNN}, ...

{'where coll = valil'; where col2 = val2'; ... 'where coln = valn'}

update(conn, 'tab', colnames, exdata, 'whereclause') exports
the MATLAB variable exdata in its current format into the database
table tab using the database connection conn.exdata can be a cell array,
numeric matrix, or structure. Existing records in the database table are
replaced as specified by the SQL whereclause command.

Specify column names for tab as strings in the MATLAB cell array
colnames. If exdata is a structure, field names in the structure must
exactly match field names in colnames.

The status of the AutoCommit flag determines whether update
automatically commits the data to the database. View the AutoCommit
flag status for the connection using get and change it using set.
Commit the data by running commit or a SQL commit statement via
the exec function. Roll back the data by runningrollback or a SQL
rollback statement via the exec function.

To add new rows instead of replacing existing data, use fastinsert.

update(conn, 'tab', colnames, {datA,datAA,...;
datB,datBB,...; datn,datNN}, {'where col1 = vali'; where
col2 = val2'; ... ‘where coln = valn'}) exports multiple
records for n where clauses. The number of records in exdata must
equal n.

® The order of records in your database is not constant. Use values of
column names to identify records.

® An error like the following may appear if your database table is
open in edit mode:

[Vendor][ODBC Product Driver] The database engine could

7-127



update

not lock table 'TableName' because it is already in use
by another person or process.

In this case, close the table and repeat the update function.

¢ An error like the following may appear if you try to run an update
operation that is identical to one that you just ran:

??? Error using ==> database.update
Error:Commit/Rollback Problems

Examples Example 1 — Update an Existing Record

Update the record in the Birthdays table using the database connection
conn, where First_Name is Jean, replacing the current value for Age

with 40.

1 First define a cell array containing the column name that you are
updating, Age.

colnames = {'Age'}

2 Define a cell array containing the new data, 40.
exdata(1,1) = {40}

3 Run the update.

update(conn, 'Birthdays', colnames, exdata,
'where First_Name = '‘'dJean''')

7-128



update

See Also

Example 2 — Roll Back Data after Updating a Record

Update the column Date in the Error_Rate table for the record selected
by whereclause, using data contained in the cell array exdata. The
AutoCommit flag is off. The data is rolled back after the update
operation is run.

1 Set the AutoCommit flag to off for database connection conn.
set(conn, 'AutoCommit', 'off')

2 Update the Date column.
update(conn, 'Error_Rate', {'Date'}, exdata, whereclause)

3 Because the data was not committed, you can roll it back.
rollback(conn)

The update is reversed; the data in the table is the same as it was
before you ran update.

Example 3 — Update Multiple Records with Different
Constraints

Given the table TeamLeagues, where column names are 'Team',
'Zip_Code', and 'New_League'

'Teami' 02116
'Team2' 02138
'Team3' 02116

Assign teams with a zip code of 02116 to the A league and teams with a
zip code of 02138 to the B league:

update(conn, 'TeamLeagues', {'League'}, {'A';'B'},
{'where Zip_Code =''02116"'""; 'where Zip_Code =''02138"'"'"'})

commit, database, fastinsert, rollback, set

7-129



versioncolumns

Purpose

Syntax

Description

Examples

7-130

Automatically update table columns

vl = versioncolumns(dbmeta, 'cata')
vl = versioncolumns(dbmeta, 'cata', 'sch')
vl = versioncolumns(dbmeta, 'cata', 'sch', 'tab')

vl = versioncolumns(dbmeta, 'cata') returns a list of columns
that automatically update when a row value updates in the catalog
cata, in the database whose database metadata object is dbmeta.

e vl = versioncolumns(dbmeta, 'cata', 'sch') returns a list of
all columns that automatically update when a row value updates in:

= The schema sch
= In the catalog cata
= For the database whose database metadata object is dbmeta

e vl = versioncolumns(dbmeta, 'cata', 'sch', 'tab') returnsa
list of columns that automatically update when a row value updates
in:

= The table tab
= The schema sch
= In the catalog cata

= For the database whose database metadata object is dbmeta

Get a list of which columns automatically update when a row in the
table BONUS updates, in the schema SCOTT, in the catalog orcl, for the
database metadata object dbmeta.

vl = versioncolumns(dbmeta, 'orcl', 'SCOTT', 'BONUS")
vl

{}

The results are an empty set, indicating that no columns in the database
automatically update when a row value updates.



versioncolumns

See Also columns, dmd, get

7-131



width

Purpose
Syntax

Description

Examples

See Also

7-132

Return field size of column in fetched data set

colsize = width(cursor, colnum)

colsize = width(cursor, colnum) returns the field size of the
specified column number colnum in the fetched data set curs.

Get the width of the first column of the fetched data set, curs:

colsize = width(curs, 1)

colsize
11

The field size of column one is 11 characters (bytes).

attr, cols, columnnames, cursor.fetch, get



Examples

Use this list to find examples in the documentation.



A Examples

Visual Query Builder GUI: Importing Data

“Working with Preferences” on page 4-6

“Retrieving All Occurrences vs. Unique Occurrences of Data” on page 4-22
“Retrieving Data That Meets Specified Criteria” on page 4-24

“Creating Subqueries for Values from Multiple Tables” on page 4-34
“Creating Queries That Include Results from Multiple Tables” on page 4-39
“Retrieving BINARY and OTHER Sun™ Java™ Data Types” on page 4-43
“Importing BOOLEAN Data from Databases to the MATLAB® Workspace”
on page 4-45

Visual Query Builder GUI: Displaying Results

“Displaying Data Relationally” on page 4-10

“Charting Query Results” on page 4-14

“Displaying Query Results in an HTML Report” on page 4-16

“Using the MATLAB® Report Generator™ Software to Customize Display
of Query Results” on page 4-17

“Displaying Results in a Specified Order” on page 4-31

Visual Query Builder GUI: Exporting Data

“Exporting BOOLEAN Data from the MATLAB® Workspace to Databases”
on page 4-48

Using Database Toolbox Functions

“Importing Data from Databases into the MATLAB® Workspace” on page
5-4

“Viewing Information About Imported Data” on page 5-10

“Exporting Data from the MATLAB® Workspace to a New Record in a
Database” on page 5-12



Using Database Toolbox Functions

“Replacing Existing Data in Databases with Data Exported from the
MATLAB® Workspace” on page 5-16

“Exporting Multiple Records from the MATLAB® Workspace” on page 5-18
“Retrieving BINARY or OTHER Sun™ Java™ SQL Data Types” on page
5-22

“Working with Database Metadata” on page 5-24

“Using Driver Functions” on page 5-30



A Examples




A

advanced query options in VQB 4-22
All option in VQB 4-22
array

data format 7-107
arrays

data format in VQB 4-8
attr 7-2

example 5-11
Attributes 7-58
attributes of data

attr function 7-2

example 5-11
AutoCommit

example 5-14

setting status 7-101

status via get 7-57

bestrowid 7-4
BINARY data types
retrieving with functions 5-22
retrieving with VQB 4-43
BOOLEAN data type
inserting 7-50
retrieving 7-24
VQB 4-45

C

catalog
changing 7-39
Catalog 7-57
CatalogName 7-61
cell arrays
assigning values to cells 5-13
data format 7-107
for exporting data 5-13
for query results 5-7

setting data format in VQB 4-6
charting
query results 4-14
Charting dialog box 4-14
data (x, y, z, and color) 4-15
legends 4-15
preview 4-15
clearwarnings 7-5
close 7-6
cols 7-8
example 5-10
ColumnCount 7-61
ColumnName 7-61
columnnames 7-9
exporting example 5-19
importing example 5-10
columnprivileges 7-10
columns 7-12
attributes 5-11
automatically updated 7-130
cross reference 7-17
exported keys 7-43
foreign key information 7-65
imported key information 7-65
names, exporting 5-13
names, importing 5-10
names, via attr 7-2
names, via columnnames 7-9
names, via columns 7-12
number 7-8
optimal set to identify row 7-4
primary key information 7-84
privileges 7-10
viewing width 5-11
width 7-132
ColumnTypeName 7-61
columnWidth 7-2
commit 7-14
example 5-14
via exec 7-38

Index-1



Index

Condition in VQB 4-24
confds
function reference 7-15
Configure Data Source dialog box 7-15
connection
clearing warnings for 7-5
close function 7-6
creating 7-25
database, opening (establishing) 7-25
database, opening (establishing),
example 5-4
information 7-82
JDBC 7-57
messages 7-57
object 5-4
opening 7-25
properties, getting 7-55
properties, setting 7-100
read-only 7-76
status 7-82
status, example 5-6
time allowed for 7-78
time allowed for, example 5-4
validity 7-71
warnings 7-57
constructor functions 5-32
crossreference 7-17
currency 7-2
Current clauses area in VQB
example 4-25
cursor
attributes 7-58
close function 7-6
creating via exec 7-35
creating via fetch 7-20
data element 7-58
error messages 7-58
importing data 5-7
object 7-20

Index-2

objects
example 5-6
opening 5-6
properties 7-100
properties, example 7-55
resultset object 7-94
Cursor 7-58
cursor.fetch 7-20
example 5-7
relative to fetch 7-51

D

data
attributes 7-2
example 5-11
cell array 5-13
column names 7-9
example 5-10
column numbers 7-8
example 5-10
commit function 7-14
committing 7-101
displaying results in VQB 4-10
exporting 7-46 7-70
exporting, example 5-14
field names 7-9
importing 7-20
importing, example 5-7
information about 5-10
inserting into database 5-21
replacing 5-16
rolling back 7-95
rolling back, via set 7-101
rows 5-10
rows function 7-96
unique occurrences of 4-22
updating 7-127
Data 7-58
data format 7-107



Index

Database Toolbox 4-8
preferences for retrieval 7-107
preferences in VQB 4-6
data sources
defining
JDBC 7-15
for connection 7-25
JDBC
accessing 2-4
modifying 2-5
removing 2-6
updating 2-5
ODBC connection 7-57
ODBC, on system 7-64
data types 7-2
BINARY, retrieving with functions 5-22
BINARY, retrieving with VQB 4-43
OTHER, retrieving with functions 5-22
OTHER, retrieving with VQB 4-43
supported 1-5
database
connecting to 7-25
connecting to, example 5-4
example 5-4
JDBC connection 7-57
metadata objects
creating 7-32
properties 7-55
properties supported 7-123
name 7-25
supported 1-3
URL 7-26
Database Toolbox
about 1-2
relationship of functions to VQB 3-1
Database Toolbox requirements 1-3
database.fetch 7-29
relative to fetch 7-51
database/fetch 7-51
DatabaseObject 7-58

dbdemos 5-1
demos 5-1
dbinfodemo 5-10
dbinsertdemo 5-12
dbupdatedemo 5-16
displaying
query results
as chart 4-14
as report 4-16
in MATLAB Report Generator
software 4-17
relationally 4-10
Distinct option in VQB 4-22
dmd 7-32
example 5-24
dotted line in display of results 4-12
driver 7-33
example 5-30
object in get function 7-57
driver objects
functions 6-6
functions, example 5-30
properties 5-30
drivermanager 7-34
drivermanager objects
example 5-30
properties 7-100
properties, via get 7-55
drivers
JDBC 1-4 7-26
troubleshooting 2-7
JDBC compliance 7-73
loading 7-93
ODBC 1-4
properties 7-55
properties, drivermanager 7-34
supported 1-4
unloading 7-126
validity 7-72
Drivers 7-60

Index-3



Index

E size (width) 7-2
editing clauses in VQB 4-26 e).(ample 5-11
empty field 5-22 width 7-132
error foreign key information
messages crossreference 7-17
cursor object 7-58 exportedkeys 7-43
database connection object 7-57 importedkeys 7-65
modifying database 7-35 format for data retrieved, preferences 7-107
error handling freeing up resources 7-6
preferences 4-6 function.s .
error notification, preferences 7-107 equivalent to VQB queries 4-49
examples when to use 3-3

using functions 5-1
exec 7-35 G

example 5-6 get 5-31 7-55
with fetch 7-29 .
. . AutoCommit status 5-14
executing queries 7-35 properties 5-30
exportedkeys 7-43 getdatasources 7-64

exporting data grouping statements 4-27
cell arrays 5-13 .
removing 4-31

inserting 7-46 7-70
example 5-12

multiple records 5-21 H
replacing 7-127 Handle 7-57
replacing, example 5-16 HTML report of query results 4-16
MATLAB Report Generator software 4-17

F
fastinsert 7-46 |

example 5-14 images
fetch 7-51 importing 5-22

cursor 7-20 VQB 4-43

database 7-29 importedkeys 7-65
Fetch 7-58 importing data
fetchmulti 7-53 data types
fieldName 7-2 BINARY and OTHER using functions 5-22
fields BINARY and OTHER using VQB 4-43

names 7-12 empty field 5-22

using functions 7-20
example 5-4

Index-4



Index

index for resultset column 7-81
indexinfo 7-68

insert 7-70

inserting data into database 5-21
Instance 7-57

isconnection 7-71

isdriver 5-31 7-72

isjdbc 7-73

isNullable 7-61
isnullcolumn 7-74
isreadonly 7-76

isReadOnly 7-61

isurl 7-77

J

Java™ Database Connectivity. See JDBC

JDBC
compliance 7-73
connection object 7-57
driver instance 7-57
driver name 7-26
drivers
names 7-26
supported 1-4
validity 7-72

MAT-file location preference 7-107
SQL conversion to native grammar 7-122

URL 7-26
via get 7-57
join operation in VQB 4-39

L

legends
in chart 4-15
labels in chart 4-15
logical data types
inserting 7-50
retrieving 7-24

VQB 4-45

logintimeout 7-78

example 5-4
Macintosh platform support 7-78

LoginTimeout

Database connection object 7-57
Drivermanager objects 7-60
example 5-31

LogStream 7-60

M

M-files 5-1

generated from VQB 4-49

MajorVersion 7-59
MATLAB Report Generator software

display of query results 4-17

memory problems

RowInc solution 7-29
RowLimit solution 7-20

Message

attr 7-2
cursor object 7-58

database connection object 7-57

metadata objects

database 7-32

example 5-24
resultset 7-97
resultset functions 5-29

methods 5-32
MinorVersion 7-59

namecolumn 7-81
nested SQL 4-34
NULL values

detecting in imported record 7-74
function for handling 4-9

preferences for reading and writing 4-6

Index-5



Index

reading from database 5-18
representation in results 4-8
setdbprefs 7-107
writing to database 4-6
nullable 7-2
numeric data format 7-107
VQB 4-6

o

objects 5-32
creating 5-32
properties, getting 7-55
ObjectType 7-57
ODBC
data sources on system 7-64
drivers 1-4
Open Database Connectivity. See ODBC
Operator in VQB 4-26
Order By Clauses dialog box 4-32
Order by option in VQB 4-31
OTHER data types
retrieving with functions 5-22
retrieving with VQB 4-43

P

parentheses, adding to statements 4-27
password 7-25 to 7-26
ping 7-82

AutoCommit 5-14

example 5-6
platforms 1-3
precision 7-2
preferences

for Visual Query Builder 4-6
primary key information 7-17
primarykeys 7-84
privileges

columns 7-10

Index-6

tables 7-124
procedurecolumns 7-86
procedures 7-89
properties
database metadata objects 7-123
example 5-25
drivers 5-30
getting 7-55
setting 7-100

Q

queries
accessing subqueries in multiple tables 4-34
accessing values in multiple tables 4-39
displaying results
as chart 4-14
as report 4-16
in MATLAB Report Generator
software 4-17
relationally 4-10
ordering results 4-31
refining 4-24
results 7-58
running via exec 7-35
querybuilder 7-91
querytimeout 7-92
quotation marks
in table and column names 1-6

readonly 7-2
ReadOnly 7-57
refining queries 4-24
register 7-93
Relation in VQB 4-24
relational display of query results 4-10
replacing data 5-16
update function 7-127



Index

reporting query results
MATLAB Report Generator software 4-17
table 4-16
reserved words
in table and column names 1-6
resultset 7-94
clearing warnings for 7-5
closing 7-6
column name and index 7-81
metadata objects 5-29
creating 7-97
properties 7-55
object, functions 6-7
properties 7-55
ResultSet 7-58
retrieving data
restrictions 1-6
rollback 7-95
RowInc
database.fetch 7-29
RowLimit
fetch 7-20
get 7-58
set 7-102
rows 7-96
example 5-10
uniquely identifying 7-4
rsmd 7-97
runstoredprocedure 7-98

S

scale 7-2
selecting data from database 7-37
set 7-100
example 5-31
setdbprefs 7-107
example 5-18
VQB 4-9
size 5-20

size of field 5-11
Sort key number in VQB 4-32
Sort order in VQB 4-32
spaces
in table and column names 1-6
speed
inserting data 7-46
SQL
commands 1-4
conversion to native grammar 7-122
join in VQB 4-39
statement
executing 7-35
in exec 7-58
in exec, example 5-6
in VQB 4-26
time allowed for query 7-92
where clause 7-127
example 5-16
where clause in exec 5-16
sql2native 7-122
SQLQuery 7-58
Statement 7-58
status of connection 7-82
example 5-6
stored procedures
in catalog or schema 7-89
information 7-86
running 7-39
string and numeric data format 7-107
strings
within strings 5-16
structure data format 7-107
VQB 4-6
subqueries
in VQB 4-34
Subquery dialog box 4-35
supports 7-123
example 5-27
system requirements 1-3

Index-7



Index

T JDBC database connection 7-26
table validity 7-77
creating user name 7-25 to 7-26 7-57

using exec 7-39
TableName 7-61 \Y/
tableprivileges 7-124
tables 7-125

example 5-29

index information 7-68

names 7-125

privileges 7-124

selecting multiple for VQB 4-40
time

allowed for connection 7-78

allowed for SQL query 7-92
TimeOut 7-57
TransactionIsolation 7-57

versioncolumns 7-130

Visual Query Builder
advanced query options 4-22
equivalent Database Toolbox functions 4-49
getting started 4-2
limitations 3-2
starting 7-91
steps to export (insert) data 4-4
steps to import (retrieve) data 4-2
when to use 3-2

VQB. See Visual Query Builder

Type 7-58

typeName 7-2 wW

typevalue 7-2 Warnings 7-57
warnings, clearing 7-5

U where clause 7-127

example 5-16
WHERE Clauses dialog box 4-24
Where option in VQB 4-24
width 7-132
example 5-11
writable 7-57

undoing exported data update 5-14
ungrouping statements 4-31
unique occurrences of data 4-22
unregister 7-126
update 7-127

example 5-16
URL 7-57

Index-8



	toc
	Before You Begin
	Product Overview
	Working with Databases
	Connecting to Databases
	Supported Platforms
	Supported Databases
	Supported Drivers
	Structured Query Language (SQL)

	Supported Data Types
	Data Retrieval Restrictions
	Spaces in Table Names or Column Names
	Quotation Marks in Table Names or Column Names
	Reserved Words in Column Names


	Working with Data Sources
	Setting up ODBC Data Sources
	Setting up JDBC Data Sources
	Accessing Existing JDBC Data Sources
	Modifying Existing JDBC Data Sources
	Removing JDBC Data Sources
	Troubleshooting JDBC Driver Problems

	Database Toolbox Functions vs. Visual Query Builder
	When to Use Visual Query Builder
	Tasks You Can Perform Using Visual Query Builder
	Limitations of Visual Query Builder

	When to Use Database Toolbox Functions

	Using Visual Query Builder
	Getting Started with Visual Query Builder
	What Is Visual Query Builder?
	Using Queries to Import Data
	Using Queries to Export Data

	Working with Preferences
	Specifying Preferences
	Saving Preferences

	Displaying Query Results
	How to Display Query Results
	Displaying Data Relationally
	Charting Query Results
	Displaying Query Results in an HTML Report
	Using the MATLAB ® Report Generator Software to Customize Displa

	Fine-Tuning Queries Using Advanced Query Options
	Retrieving All Occurrences vs. Unique Occurrences of Data
	Retrieving Data That Meets Specified Criteria
	Grouping Statements
	Removing Grouping of Statements

	Displaying Results in a Specified Order
	Creating Subqueries for Values from Multiple Tables
	Creating Queries That Include Results from Multiple Tables
	Additional Advanced Query Options

	Retrieving BINARY and OTHER Sun Java Data Types
	Importing and Exporting BOOLEAN Data
	Importing BOOLEAN Data from Databases to the MATLAB Workspace
	Exporting BOOLEAN Data from the MATLAB Workspace to Databases

	Saving Queries in M-Files
	About Generated M-Files
	VQB Query Elements in M-Files


	Using Database Toolbox Functions
	Getting Started with Database Toolbox Functions
	Importing Data from Databases into the MATLAB Workspace
	Viewing Information About Imported Data
	Exporting Data from the MATLAB Workspace to a New Record in a Da
	Replacing Existing Data in Databases with Data Exported from the
	Exporting Multiple Records from the MATLAB Workspace
	Retrieving BINARY or OTHER Sun Java SQL Data Types
	Working with Database Metadata
	Accessing Metadata
	Resultset Metadata Objects

	Using Driver Functions
	About Objects and Methods in the Database Toolbox Software

	Function Reference
	General
	Database Connection
	SQL Cursor
	Importing Data into the MATLAB Workspace from a Database
	Database Metadata Object
	Exporting Data from the MATLAB Workspace to a Database
	Driver Object
	Drivermanager Object
	Resultset Object
	Resultset Metadata Object
	Visual Query Builder

	Functions — Alphabetical List
	Example 3 — Import Rows Iteratively until You Retrieve All Data
	Example 4 — Import Numeric Data
	Example 5 — Import BOOLEAN Data
	Example 2— Import Two Columns of Data and View Information
	Examples
	Driver Objects
	Database Metadata Objects
	Drivermanager Objects
	Resultset Objects
	Resultset Metadata Objects
	Example 1 — Get Connection Property and Data Source Name
	Example 2 — Get Connection Property and AutoCommit Flag Status
	Example 3 — Display Data in Cursor
	Example 4 — Get Database Metadata Object Properties
	Example 3 — Set the AutoCommit Flag to Off and Commit Data

	Examples
	Visual Query Builder GUI: Importing Data
	Visual Query Builder GUI: Displaying Results
	Visual Query Builder GUI: Exporting Data
	Using Database Toolbox Functions

	Index

	tables
	DataReturnFormat and ErrorHandling Properties and Values for set
	Null Data Handling Properties and Values for setdbprefs
	Other Properties and Values for setdbprefs (Not Accessible via Q


